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 2 

Abstract: 19 

 20 

Single nucleus ATAC-seq is a key assay for gene regulation analysis. Existing approaches to 21 

scoring feature matrices from sequencing reads are inconsistent with each other, creating 22 

differences in downstream analysis, and displaying artifacts. We show that even with sparse single 23 

cell data, quantitative counts are informative for estimating a cell’s regulatory state, which calls 24 

for consistent treatment. We propose Paired-Insertion-Counting (PIC) as a uniform method for 25 

snATAC-seq feature characterization. 26 

 27 

Main: 28 

 29 

Single nucleus ATAC-seq (snATAC-seq) assays open chromatin profiles of individual cells. 30 

However, unlike RNA-seq where the counts estimate numbers of molecules, there is not a common 31 

agreement on what biological state is being estimated from snATAC-seq data. Existing snATAC-32 

seq analysis methods create chromosomal domain features either by arbitrarily dividing the entire 33 

genome into fixed-width segments (features usually referred to as bins), or estimating discrete 34 

domains by peak-calling from aggregated pseudo-bulk data (features usually referred to as peaks). 35 

Using bins as features has problems associated with arbitrarily fixing length scales and phase (i.e., 36 

starting positions of the bins) and the problem that many bins will contain no relevant information. 37 

Peaks subset functionally relevant genomic intervals, but there are technical challenges to resolve 38 

boundaries for heterotypic datasets and to identify functional elements for rare cells, and 39 

differences exist in numerical criterion for peak identification. After choosing bins or peaks, some 40 

methods assign the feature counts based on the number of fragments that overlap with a region 41 

(fragment-based counting; e.g., Signac1 and snapATAC2), while others assign counts based on the 42 

number of insertions within the region (insertion-based counting; e.g., 10X cellranger ATAC3 and 43 

ArchR4). After feature counting, most methods convert the counts into a binary state of “open” or 44 

“closed” (e.g., snapATAC2, SCALE5, scOPEN6, MASETRO7, and cisTopic8), while other retain 45 

quantitative count information, implying that single nucleus assays may contain quantitative 46 

information on nucleosome density or turnover (e.g., scABC9, chromVAR10, and ArchR4).  47 

 48 
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 3 

When considering counts, the configuration of fragment/insertion positions around the peak/bin 49 

interval can create different quantifications dependent on whether one uses fragments or insertions 50 

(Figure 1a-b). Histograms of counts for fragment-based or insertion-based counting applied to the 51 

same dataset (10X Genomics peripheral blood mononuclear cell dataset, PBMC-5k) show evident 52 

differences (Figure 1c-f and Supplementary Table 1). In particular, with insertion-based 53 

counting, there is an artifact of depleted odd numbers. In a standard ATAC-seq experiment, two 54 

Tn5 insertions in the appropriate directions are required to form one amplicon fragment, thus the 55 

unit of observation is pairs of insertions. Odd number of insertions only arise when rare fragments 56 

cross feature boundaries, artificially breaking up paired insertions of a fragment. Fragment-based 57 

counting also has problems because the entire interval of an amplicon from a pair of insertion is 58 

considered evidence of “openness”. However, longer the fragment, less likely the region away 59 

from the insertion sites is open. This is especially acute when there are long fragments with 60 

insertions completely outside the peak/bin of interest11,12 (cell 1 in Figure 1a). The two counting 61 

strategies can result in discrepancies in downstream analysis. As an example, we analyzed a P0 62 

mouse kidney snATAC-seq dataset13 for Differentially Accessible Region (DAR) identification 63 

between two most abundant cell types with ArchR4 and Signac1 (Methods). We found up to 4.7% 64 

peaks are only significant with one counting strategy, but not the other (Supplementary Figure 65 

1a).  66 

 67 

If the counts are binarized, both insertion and fragment counting are consistent with each other, 68 

except for rare cases (e.g., cell 1 in Figure 1a). Thus, the vagaries of counting only matter if 69 

snATAC-seq contains quantitative information about the chromosome state. While variable 70 

nucleosome density and turnover dynamics imply that “openness” is a quantitative state14, it is not 71 

clear whether sparse data in single cells contain quantitative information. We asked whether more 72 

fragments in a peak for a single cell indicates higher probability that a randomly selected cell of 73 

the same type would be in open state. That is, we asked whether within-cell insertion density is 74 

predictive of between-cell sampling of open states. We first analyzed a human cell line snATAC-75 

seq dataset4. The cell-by-peak matrix was constructed with insertion-based counting. We retained 76 

166,142 peaks and 10,832 cells in ten cell types after stringent quality control (QC; see Methods). 77 

For each peak, we estimated the proportion of cells with the peak being accessible (hereafter we 78 

denote as open probability) in each of the ten cell types (Methods). With insertion-based counting 79 
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approach, a count greater or equal to three indicates at least two fragments (four insertion events)—80 

we call such cases “high density peaks”. We calculated the relative proportion of cells with high 81 

density peaks for each of the ten cell types (i.e., 𝑃(𝑦 ≥ 3|𝑦 > 0	)) and then compared their rank 82 

order with the rank order of cell type open probability by Spearman rank correlation. Among the 83 

peaks we tested, the great majority (>94.6%) showed positive correlation and 9.4% showed 84 

significant correlations at significance level of 0.05 after FDR p-value correction (34.5% without 85 

FDR correction, Figure 2a). We also investigated the relationship between open probability and 86 

the relative proportion of cells with counts equal to two given counts being either one or two (i.e., 87 

𝑃(𝑦 = 2|𝑦 = 1	𝑜𝑟	2	)) for the ten cell types. Consistent with our reasoning that the occurrence of 88 

one insertion mostly represents the boundary phasing artifact, we observed a symmetric 89 

distribution of Spearman correlation coefficients centered around 0 (Figure 2b), with only ~0.08% 90 

peaks showing significant correlations at significance level of 0.05 after FDR p-value correction. 91 

Example peaks are shown in Figure 2c-d and Supplementary Figure 1b-c. We next examined 92 

the P0 mouse kidney snATAC-seq dataset13 we examined above. After QC, we retained 256,574 93 

peaks and 9,286 cells in seven most abundant cell types in the dataset. With both insertion-based 94 

and fragment-based counting matrices, we conducted the same analysis as above, and the results 95 

were consistent with the human cell line data (Supplementary Figure 2a-c) where we found high-96 

density peaks provided significant information on greater probability of open peaks in the 97 

corresponding cell type.  98 

 99 

To investigate the potential relationship between snATAC-seq count and gene expression, we 100 

analyzed a 10X genomics PBMC multiome dataset with RNA and ATAC measured on the same 101 

cells. We quantified the cell-by-peak matrix with insertion-based counting approach. Because the 102 

regulatory structure of chromatin domains around a given gene may be complex and largely 103 

unknown, we considered only peaks that are close (±	100 bp) to Transcript Start Site (TSS) to 104 

focus on the most proximal relationship. We also focused on peaks that had a broad range of one 105 

to four counts across cells, filtering out those with too small number of cells within appropriate 106 

range (Methods). This resulted in 3,387 peak-gene pairs across 11,234 cells. We compared the 107 

gene expression levels with associated TSS peak insertion count = 1 or 2 (single fragment) against 108 

those with count ≥ 3 (more than two fragments) using Wilcoxon rank sum test. We found 199 109 

significant peak-gene pairs after FDR correction, 189 of which have positive log fold change 110 
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(Figure 2e); 67.2% of peak-gene pairs showed higher non-zero expression proportion in the group 111 

of count ≥  3. When we compared gene expression levels associated with TSS peak insertion count 112 

= 1 against those with count = 2, we found only 18 significant peak-gene pairs after FDR correction, 113 

nine of which have positive log fold change (Figure 2f). In addition, 52% peak-gene pairs showed 114 

higher non-zero expression proportion in the group of count = 2, suggesting no difference between 115 

the two groups. Figure 2g-h shows two examples of peak-gene pair where the distribution of RNA 116 

expression monotonically changes as a function of ATAC counts. We next analyzed a Bone 117 

Marrow Mononuclear Cells (BMMC) multiome dataset15 which again indicated that peak density 118 

was informative for expression levels (Supplementary Figure  3a-d). 119 

 120 

In sum, greater counts of snATAC-seq insertions are correlated with greater probability of peak 121 

open state and higher expression of proximal genes, suggesting that even with single nuclear data, 122 

quantitative counting provides important functional information about the epigenomic state of the 123 

cell. We noted above that insertion-based counting creates occasional artifacts and ignores the fact 124 

that, while insertions themselves may be random, the sequence evidence is always in terms of pairs 125 

of insertions. Fragment-based counting has the problem that direct evidence of open state is only 126 

at the insertion site and the evidence for open state decays as a function of distance from the 127 

insertion site. Ideally, it might be appropriate to estimate the quantitative open state of an interval 128 

as a function of fragment lengths and local chromosome features. However, such a model will 129 

need to be data-driven given the irregularities of locus-specific chromosome dynamics. Here, we 130 

propose a simple consistent counting strategy we call Paired-Insertion-Counting (PIC, 131 

https://github.com/Zhen-Miao/PIC-snATAC). With PIC, for a given chromosome interval, if an 132 

ATAC-seq fragment’s pair of insertions are both within the interval, counted as one (pair); if only 133 

one insertion is within the interval also count one (pair). 134 

 135 

PIC is consistent with the fact that all fragments have two insertions. It also prevents counting a 136 

fragment when its ends are both outside the peak/bin interval. It has the drawback that when one 137 

insertion is in the peak/bin and the other insertion is far from this insertion, evidence is weak that 138 

both insertions provide information on the current peak/bin. However, in most datasets, long 139 

fragments are rare and unlikely to greatly distort the data (Supplement Figure 4). We recommend 140 

treating snATAC-seq PIC count as a quantitative trait, wherever sensitivity is a critical factor.   141 
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 142 

In sum, snATAC-seq is increasingly an important tool for genomic analysis and despite sparse 143 

data at single cell resolution, we find evidence that it can be informative to consider “openness” 144 

as a quantitative trait. Existing approaches are inconsistent in how they quantify peak/bin openness 145 

and here we propose a new counting method that is consistent with the molecular basis of the 146 

assays. 147 

 148 

 149 
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Figures and Figure Legends 187 

 188 

Figure 1. Two existing counting strategies for snATAC-seq data processing. 189 

(a-b) Schematic example of how the same open chromatin profiles can result in different counts 190 

with insertion-based or fragment-based counting strategies 191 

(c-f) Histogram of count frequencies with two counting strategies and with peaks or bins as 192 

features 193 

 194 
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 196 

Figure 2. snATAC-seq data contain quantitative information of cellular states. 197 

(a) Histogram of Spearman correlation coefficients between open probability in each group and 198 

the relative frequency of counts greater than or equal to 3 in human cell line data  199 

(b) Histogram of Spearman correlation coefficients between open probability in each group and 200 

the relative frequency of counts equal to 2 given counts being either 1 or 2 in human cell line data 201 

(c-d) An example peak with different open probabilities across various cell types and the relative 202 

frequency of peaks with counts greater than or equal to 3 or the relative frequency of counts equal 203 

to 2 given counts were either 1 or 2 in human cell line data. Another example was displayed in 204 

Supplementary Figure 1b-c 205 

(e) Volcano plot showing the normalized gene expression levels between cells with TSS peak 206 

insertion counts equal to 1 or 2 and cells with TSS peak insertion counts greater than or equal to 3 207 

in PBMC data 208 

(f) Volcano plot showing the normalized gene expression levels between cells with TSS peak 209 

insertion counts equal to 1 and cells with TSS peak insertion counts equal to 2 in PBMC data 210 

(g-h) Examples of peak-gene pairs where gene expression levels are related to the TSS peak 211 

insertion counts in PBMC data 212 

 213 
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Methods: 216 

 217 

Public Datasets  218 

We downloaded the following snATAC-seq datasets from public repositories: mouse kidney data13  219 

(GEO accession number GSE157079), human cell line data4 (GEO accession number GSE162690), 220 

and human BMMC data15 (GEO accession number GSE194122). We downloaded the 10X 221 

Genomics human PBMC data (including a snATAC-seq dataset and a sn-multiome dataset) from 222 

10X Genomics website (https://www.10xgenomics.com/resources/datasets).   223 

 224 

Data QC and pre-processing 225 

To remove artifacts due to data processing, we conducted QC filtering for the datasets. First, we 226 

removed peaks with very high counts (≥7 with fragment-based counting or ≥ 14 with insertion-227 

based counting) across the entire dataset, which could be associated with repetitive or potentially 228 

uncharacterized blacklist regions2. We removed potential doublet cells by the number of regions 229 

with per-base coverage greater than 3 (Ref. 16). We also removed fragments with interval length 230 

smaller than 10 that are likely to be misalignment.  231 

 232 

Processing 10X Genomics PBMC snATAC-seq data (5k) 233 

The 10X Genomics PBMC snATAC-seq data (ID: atac_pbmc_5k_nextgem) were used to compare 234 

the count distribution obtained from different counting methods. The peak ranges and insertion-235 

based peak-by-cell count matrices were obtained from cellranger pipeline. The insertion-based 236 

bin-by-cell matrix was constructed by ArchR4. Bins that are accessible in fewer than ten cells were 237 

filtered. To obtain the fragment-based peak or bin count matrix, we used Signac1 pipeline.  238 

 239 

Adjusting Open Probability 240 

We define “open probability” as the probability that a given genomic region is accessible for a 241 

randomly sampled cell of a given cell type. Note that this open probability does not measure the 242 

degree of openness but the probability of capturing a cell in an open state accessible to ATAC-seq 243 

assay. This probability will be governed by the temporal dynamics of nucleosome-dependent 244 

accessibility of that region for that cell type. Typical snATAC-seq data have missing data issue 245 

and are very sparse. In order to unbiasedly estimate the chromatin open probability in each cell 246 
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type, we considered two sources of excessive zeros in the snATAC-seq data: biological 247 

inaccessibility and technical failure to capture open state in sequencing data. We developed the 248 

following model to estimate true open proportion. 249 

 250 

Let 𝒁!,#$ 	= 	 (	𝑍!,%$ 	, ⋯ , 𝑍!,&$ )  be a 𝐽 × 1 binary vector denoting the open chromatin status of cell 𝑐 251 

that depends on group label 𝑔 (e.g., cell type label). Each element in the vector, 𝑍!,#$ ∈ {1,0} 252 

represents the accessibility of 𝑗'( genomic region (e.g., bin or peak), where the value 1 indicates 253 

open and 0 indicates close. We consider 𝑍!,#$  to be sampled from a Bernoulli distribution 254 

parameterized by 𝑝!,#, the probability that a random cell of g type will be open for 𝑗'( region: 255 

𝑍!,#$ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖E𝑝!,#F 256 

 257 

In practice, the true open chromatin status 𝑍 of cell 𝑐 is unobserved. Instead, due to disparity of 258 

enzyme activity and sequencing depth across cells, an open state may not be observed in the data. 259 

We introduce 𝑻)$  as a 𝐽 × 1 binary vector representing the capture state of different genomic 260 

regions in cell 𝑐. This status depends on sequencing depth 𝑑 for cell c. Additional experimental 261 

factors and the particular chromosomal region may also affect the status, which we ignore here. 262 

We also drop index d, since every cell is associated with particular sequencing depth. We assume: 263 

𝑇$ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞$ 	)  264 

 265 

for some parameter vector 𝑞$ that is a function of the cell. 266 

 267 

Let 𝑌!
(%), 𝑌!

(,), …	 , 𝑌!
(-)	be a random vector representing observed data with 𝑔 ∈ 	 {	1, 2, … , 𝐺} a 268 

priori assigned cell type labels. 𝑌!
($) ∈ {0,1} where 1 indicates open and 0 indicates close. Then 269 

𝒀!$ 	= 𝒁!$ ⊗	𝑻)$ 	 where ⊗ denote element-wise direct product (Hadamard Product). 270 

 271 

For a given dataset 𝒚, we set the loss function 𝑙𝑜𝑔	𝐿(𝒑, 𝒒|𝒚) as 272 

 273 

𝑙𝑜𝑔	𝐿(𝒑, 𝒒|𝒚) 	= 	TT[𝑦#$ 	𝑙𝑜𝑔(𝑝#𝑞$) +	(1 − 𝑦#$)	𝑙𝑜𝑔(1 − 𝑝#𝑞$)]
-

$.%

&

#.%

 274 
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 275 

In order to compute both estimators for 𝒑 and 𝒒, we implemented a coordinate descent 276 

algorithm. This iteration stops until convergence: 277 

1. Start with an initial estimate of 𝒑(/)		 278 

2. For 𝑡 = 1, 2, … 279 

a. Compute 𝑞$
(') by:  280 

𝑞$
(') =	

∑ 𝑦#$
&
#.%

∑ 𝑝#
('0%)&

#.%

		 281 

b. Update 𝑝#
(')  by moment estimator: 282 

𝑝$
(') =	

∑ 𝑦#$-
$.%

∑ 𝑞$
(')-

$.%
 283 

 284 

Analysis of count frequency and open probability in human cell line data 285 

The cell line data matrix was constructed by insertion-based counting method, and the maximum 286 

count was 4 in this matrix. The open probability for each cell type, 𝑝!, was estimated with the 287 

method described above. Since the count 2 and 1 mainly represent the boundary phasing issue, we 288 

estimated the probability of observing count greater or equal to 3 given observing a non-zero count,  289 

𝑃![𝑦 ≥ 3|𝑦 > 0] 290 

𝑃![𝑦 ≥ 3|𝑦 > 0] = 	
𝑓1 + 𝑓2

𝑓% + 𝑓, + 𝑓1 + 𝑓2
	 291 

 292 

Since some peaks do not have counts that are greater than three, we only retained peaks with at 293 

least five count greater than 3, and 46,499 peaks were left. The Spearman correlation was 294 

computed between the open probability and frequency of counts greater than three. In addition, we 295 

also computed the probability of observing a count equal to 2 given the count being 1 or 2,  296 

𝑃![𝑦 = 2|𝑦 > 0] 297 

𝑃![𝑦 = 2|𝑦 = 1	𝑜𝑟	2] = 	
𝑓,

𝑓% + 𝑓,
	 298 
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and its correlation with open probability. 299 

 300 

Analysis of differentially accessible regions (DAR) in P0 mouse kidney data 301 

The peak information as well as cell type annotations were obtained from the original publication13. 302 

The peak-by-cell matrix was then constructed by both insertion-based and fragment-based 303 

approaches. The count correspondence is summarized in the Supplementary Table 2. We then 304 

picked the two most abundant cell types, nephron progenitor cells and stroma cells for the DAR 305 

analysis. Two DAR approaches, Signac1 and ArchR4, were used to identify DARs. Peaks with 306 

FDR-adjusted p value ≤	 0.05 were regarded as DARs.  307 

 308 

Analysis of count frequency and open probability in P0 mouse kidney data 309 

We retained cell types with more than 600 cells to get accurate estimations of the parameters, 310 

which resulted in seven cell types. The open probability for each cell type, 𝑝!, was estimated with 311 

the method described above. Within a cell type, assuming there are 𝑓% cells with count 1, 𝑓, cells 312 

with count 2 and so on, the probability of observing counts greater than or equal to 3 given 313 

observing a non-zero count is estimated by  314 

𝑃![𝑦 ≥ 3|𝑦 > 0] = 	
𝑓1 +⋯+ 𝑓3

𝑓% + 𝑓, + 𝑓1 +⋯+ 𝑓3
	 315 

 316 

Spearman correlation was computed between the two quantities, and results were shown in 317 

Supplementary Figure 2a-b. We observed the same pattern with fragment-based counting when 318 

we compare the rank correlation between open probability and  𝑃![𝑦 ≥ 2|𝑦 > 0] . 319 

(Supplementary Figure 2c).  320 

 321 

Analysis of gene expression and different counts for PBMC data 322 

The 10X Genomics PBMC sn-multiome data (ID: pbmc_granulocyte_sorted_10k) were used to 323 

study the relationship between the number of insertions around TSS and its associated gene 324 

expression. We first retained peaks that overlap with ±	100	𝑏𝑝 region around TSS and with at 325 

least five instances of counts greater than or equal to two. Then, we linked these peaks with their 326 

associated genes to form peak-gene pairs. The peak-gene pairs were then filtered by requiring the 327 
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non-zero expression proportion with chromatin insertion counts greater than zero to be at least 328 

10%. 3,387 such peak-gene pairs were kept for the downstream analysis.  329 

 330 

For each peak-gene pair, we grouped the normalized gene expression levels by the insertion count 331 

in the TSS peak. Mean expression level and non-zero expression proportion were calculated for 332 

each group. Two-sided Wilcoxon Rank Sum test was then conducted between the two groups and 333 

log fold change was computed by comparing the mean expression differences.  334 

 335 

Analysis of gene expression and different counts for BMMC data 336 

The BMMC dataset15 was collected across multiple institutes and multiple donors with batch effect. 337 

To prevent batch effect, we focused on one donor sample that was collected at one institute (donor 338 

#2 collected from institute #1). There are 6,740 cells across multiple cell types. With the same 339 

filtration criteria as above, we retained 2,488 peak-gene pairs for our analysis. The same analyses 340 

were conducted as above and were shown in Supplementary Figure 3a-c.  341 

 342 

 343 

  344 
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Supplementary Information: 345 

 346 

Supplementary Figure 1 347 

(a) Number of significant Differentially Accessible Regions between the two most abundant cell 348 

types, nephron progenitor cells and stroma cells with two different counting approaches and two 349 

different pipelines 350 

(b-c) An example of a peak with different open probabilities across various cell types and the 351 

relative frequency of peaks with counts greater than or equal to 3 or the relative frequency of 352 

counts equal to 2 given counts were either 1 or 2. Another example was displayed in Figure 2c-d 353 

 354 

 355 

 356 

Supplementary Figure 2 357 

(a) Histogram of Spearman correlation coefficients between open probability in each group and 358 

the relative frequency of counts greater than or equal to 3 in P0 mouse kidney data 359 

(b) Histogram of Spearman correlation coefficients between open probability in each group and 360 

the relative frequency of counts equal to 2 given counts being either 1 or 2 in P0 mouse kidney 361 

data 362 

(c) Histogram of Spearman correlation coefficients between open probability in each group and 363 

the relative frequency of counts greater than or equal to 2 with fragment-based counting in P0 364 

mouse kidney data 365 
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 366 

 367 

 368 

 369 

Supplementary Figure 3 370 

(a) Volcano plot showing the normalized gene expression levels between cells with TSS peak 371 

insertion counts equal to 1 or 2 and cells with TSS peak insertion counts greater than or equal to 3 372 

in BMMC data 373 

(b) Volcano plot showing the normalized gene expression levels between cells with TSS peak 374 

insertion counts equal to 1 and cells with TSS peak insertion counts equal to 2 in BMMC data 375 

(c-d) Examples of peak-gene pairs where gene expression levels are related to the TSS peak 376 

insertion counts in BMMC data 377 

 378 

 379 

Supplementary Figure 4 380 

(a) Tn5 Insert size distribution in 10X Genmoics PBMC-5k snATAC-seq dataset 381 

(b) Tn5 Insert size distribution in P0 mouse kidney snATAC-seq dataset 382 

(c) Tn5 Insert size distribution in 10X Genmoics PBMC-10k snMultiome dataset 383 

 384 

Supplementary Table 1: Frequency of counts with different counting strategies (PBMC-5k 385 

data) 386 
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Supplementary Table 2: Correspondence between different counting strategies (kidney P0 387 

data) 388 

 389 
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