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Abstract:

Single nucleus ATAC-seq (snATAC-seq) experimental designs have become increasingly
complex with multiple factors that might affect chromatin accessibility, including cell type, tissue
of origin, sample location, batch, etc., whose compound effects are difficult to test by existing
methods. In addition, current snATAC-seq data present statistical difficulties due to their sparsity
and variations in individual sequence capture. To address these problems, we present a zero-
adjusted statistical model, PACS, that can allow complex hypothesis testing of factors that affect
accessibility while accounting for sparse and incomplete data. For differential accessibility
analysis, PACS controls the false positive rate and achieves on average a 17% to 122% higher
power than existing tools. We demonstrate the effectiveness of PACS through several analysis
tasks including supervised cell type annotation, compound hypothesis testing, batch effect
correction, and spatiotemporal modeling. We apply PACS to several datasets from a variety of

tissues and show its ability to reveal previously undiscovered insights in snATAC-seq data.

Main:

Single nucleus ATAC-seq (snATAC-seq) is a powerful assay for profiling the open chromatin in
individual cells', and has been applied to study gene regulation across tissues and under various
conditions, including homeostasis®>*>, development®’, or disease®®. The cis-regulatory elements
(CREs), modulated by nucleosome turnover and occupancy'?, display variable accessibility across
cells. The level of accessibility of CREs usually indicates its activities!'?, and in a cell, the activities
of CREs are dynamic, dependent on various physiological factors such as cell type!?,

11,12

developmental state®’, and spatial location of the tissue!!:!2, Identifying the sets of elements whose

accessibility is governed by certain physiological factors is essential in understanding the cis-

regulatory codes of biological processes!>:!4,

Among all the factors that drive the accessibility of CREs, only some factors are experimentally
controlled, for example, tissue type and location of cell collection. In a typical single cell
experiment, the collection of cells is a random sample of a cell’s variable states over the unknown

factors (e.g., cell cycle stage, metabolic cycles) while controlling for the known factors (e.g., tissue,
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location, batch). Here, we will call the known factors that affect or predict accessibility as
independent variables following standard experimental design terminology. We note that
sometimes the values of the independent variables are estimated from the data, such as
unsupervised inference of cell type labels or time-sequences. Nevertheless, as the data are sampled
over unknown microstates and stochastic molecular processes, the latent accessibility of a CRE

should be considered as a random variable, even without experimental variability.

With the emergence of atlas-scale snATAC-seq data collection, available data usually involve
multi-factorial predictive variables (e.g., health condition, donor variations, time points). A
fundamental question with ATAC-seq data is whether any of the variables significantly affect or
predict the accessibility of certain CREs; for example, whether cell type affects accessibility.
Existing approaches for hypothesis testing typically involve pairwise testing between two states of
a single factor (e.g., tests for Differential Accessible Regions, DARs, between two cell types)!>16:17,
However, these approaches do not allow testing complex compound hypotheses that involve
multiple independent variables. When there are multiple independent variables for a response
variable, a standard approach is to model the response by a generalized linear model through an
appropriate link function!8, However, the standard generalized linear model (GLM) framework
faces challenges in handling technical biases arising from heterogeneity in sequencing coverage
of each cell and overall extreme sparsity of data. To address these limitations, we present a new
statistical framework that extends the GLM framework to incorporate sample-specific missing
data. Here, we derived a missing-corrected cumulative logistic regression (mcCLR) for the
analysis of single cell open chromatin data. Furthermore, we utilized the Firth regularization!®2°

to account for data sparsity.

With this statistical framework, we present our Probability model of Accessible Chromatin of
Single cells (PACS), a toolkit for snATAC-seq analysis. PACS allows methods for complex
compound analysis tasks in snATAC-seq data analysis, including cell type classification, feature-
level batch effect correction, and spatiotemporal data analysis. With simulated data and real data,
we show that PACS effectively controls false positives while maintaining sensitivity for model

testing. We apply PACS to a mouse kidney dataset, a developing human brain dataset, and a time-
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series PBMC treatment dataset, all of which have complex study designs, to demonstrate its

capability to model multiple sources of variations for hypothesis-driven biological inference.

Results:

Probabilistic model of accessible peaks and statistical test framework

In the PACS framework, we model the accessibility state of CREs in a single cell as a function of
predictive factors such as cell type, physiological/developmental time, spatial region, etc. We use
a design matrix, F¢y; to represent these variables, where C is the number of cells and ] is the
number of independent variables (including dummy variables). Let Y.«), represent an integer-
valued snATAC-seq count matrix across C cells and M genomic regions. For empirical ATAC-
seq data, these regions M are determined by data-dependent peak calling, where peaks are regarded
as the set of candidate CREs?!?2, As snATAC-seq can recover quantitative information on the

density and distribution of nucleosomes!”-?3

, we use integer values Y, € {0,1,2, ... } to represent
the level of accessibility. Existing pipelines diverge in the quantification of snATAC-seq counts,
and we propose to use the paired insertion count (PIC) matrix as a uniform input for downstream
analyses'’. For standard snATAC-seq experiments, PIC counts follow a size-filtered signed
Poisson (ssPoisson) distribution for a given Tn5 insertion rate!’. Thus, the integer-valued PIC
counts are observed measurements of the latent Tn5 insertion rates and chromatin accessibility
(Fig. 1, upper panel). Based on this latent variable perspective we developed a proportional odds

cumulative logit model to decompose the cumulative distribution of Y, by its predictive variables

Fe...

With cell-specific nucleosome preparation and sequencing depth, the (observed) snATAC-seq
output may miss sequence information from certain accessible chromatin (Fig. 1, lower panel).
Here, we use Rcxp, With binary values, to represent the read recovery/capturing status for each
cell and region. This matrix encapsulates all the experimental factors (Tn5 activities, sequencing
depth, etc.) that result in a disparity of reads recovered across cells. The observed chromatin states,
denoted by Z.,,, are specified by the element-wise product between the latent accessibility Yy,
and the capturing status R¢y,. Since various experimental factors such as sequencing depth are cell-

specific, we further assume the capturing probability P(R.,, = 1) to be unique to each cell but
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common to all peaks in that cell, and thus we use g, to denote this conditional read capturing

probability in cell c.

Motivated by the latent variable model and to account for cell-specific missing data, we extended

the cumulative logit model to simultaneously decompose accessibility as:

logit(P(Yey, = 1)) = a® + 3/_ BF,;, where P(Zey, = 1) = P(Y,, = 1)q,

logit(P(Yer, = 2)) = a® + X)_, B;F,;, where P(Zey, = 2) = P(Y,n = 2)q.

logit(P(Yer, = T)) = a™ + X)_, B;F,;, where P(Zey, = T) = P(Yo = T)qc

(Eq. 1)

where q. is the capturing probability for a cell ¢, P(Y,,,, = t) is the sampling probability of cells
with accessibility level greater than or equal to t, a(® is the intercept term in the t*" cumulative
logit, and B is the coefficient for the j th column of the design matrix. Eq. 1 assumes a proportional
odds model, where we have a common set of coefficients §; for all levels of the cumulative
distribution, while allowing for a unique constant term a(® for each level. Hereafter, we refer to

our method as the mecCLR model, which stands for the missing-corrected cumulative logit

regression model.

With the formulation above, the effect of a complex set of independent variables (and their
interactions) on accessibility can be tested by the null hypothesis of §; = 0 with a likelihood ratio
test. One statistical challenge is to estimate g.’s for each cell. We assumed the same capturing
probability within a cell regardless of accessibility across different peaks such that the problem is
tractable and can be computed efficiently. Operationally, we first group the cells by their
combination of the treatments and then utilize a coordinate descent algorithm to obtain estimates

of P(Yy, = 1|f.) and q. (Methods).

Another statistical challenge of snATAC-seq is that the data is very sparse, creating a so-called

“perfect separation” problem (see?#). Here, we developed a regularized model to resolve the issues
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with sparsity in snATAC-seq data by generalizing the Firth logistic regression model'®*, where
we incorporate the cell-specific capturing probability (Eq. 1) into the model (Methods).

Essentially, a Firth penalty is introduced in the regression model:

logL*(B12) = log L(B|Z) +log|I(B)| (Eq.2)

Where L* represents the penalized likelihood, L is the likelihood of the regression model, and I(f8)
is the information matrix. Derivations of the parameter estimation framework are described in the
Methods section. With the proposed methods, we aim to control type I error more accurately and
account for technical zeros (due to uneven data capturing) and sparse data. This regression-based
model enables the testing of multiple covariates that jointly determine accessibility, while

controlling for other covariates or confounders.

Application of PACS to cell type identification

To demonstrate the effectiveness of our model for separating the latent chromatin accessibility
from the capturing probability, we evaluated three model assumptions using the task of (supervised)
cell type prediction, where the goal is to predict cell types in a new snATAC-seq dataset given an
annotated (labeled) dataset.

We first evaluated the accuracy of the estimation procedure of PACS. We simulated groups of
cells with a spectrum of both the underlying probability of accessibility (P(Y,,, = 1), or p in short)
across peaks, and the capturing probabilities (q) across cells (Methods). We then utilized PACS
to jointly estimate p and q, with n=1000, 500, or 250 cells. The simulation results show that our
estimator can determine both the capturing probabilities and open-chromatin probabilities
accurately, with root mean squared errors (RMSE) for the underlying probability of accessibility
from 0.028 (n=1000) to 0.027 (n=250) and RMSE for capturing probability from 0.0067 (n=1000)
to 0.012 (n=250, Fig. 2a-d, Supplementary Fig. 1a-b, and Supplementary Table 1).

We next tested PACS by applying it to a cell type label transfer task, comparing it with the Naive

Bayes model. For both models, we started with an estimated p, for each known cell type group

label g, and then applied the Bayes discriminative model to infer the most probable cell type labels
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for novel unidentified cells. Naive Bayes does not assume missing data; thus, it ignores the cell-
specific capturing probability. The prediction performances were evaluated with ten-fold cross-
validation and holdout methods, where the original cell type labels are regarded as ground truth
(Methods). We tested the methods on five datasets, including two human cell line datasets®®, two
mouse kidney datasets®, and one marmoset brain dataset?’. In the two human cell line datasets, the
cell line labels are annotated by their SNP information?®, so the labels are regarded as gold
standards. For the remaining datasets, the original cell type labels are generated by clustering and

marker-based annotation, so the labels may have errors.

PACS consistently outperforms the Naive Bayes model with an average 0.31 increase in Adjusted
Rand Index (ARI, Fig. 2e), suggesting the importance of considering the cell-to-cell variability in
capturing rate. For the gold-standard cell line mixture data, we achieved almost perfect label
prediction (ARI > 0.99), while Naive Bayes had much lower accuracy with an average ARI = 0.54
(Fig. 2f-g). For the kidney data® and the marmoset brain data?’, PACS still achieved high
performance, with average ARI equal to 0.92, 0.90, and 0.88 for the adult kidney, PO kidney, and
marmoset brain data, respectively. The Naive Bayes model, on the other hand, again produced
lower ARI scores, equal to 0.59, 0.65, and 0.69 for the three datasets, respectively
(Supplementary Fig. 1e-h).

For the holdout experiment, where training and testing is done on different datasets, consistent
with the above results, our method shows more accurate cell label prediction than Naive Bayes
(Supplementary Fig. 1i). We note that our cell type label prediction approach is very efficient,

and the total time for training and prediction takes < 5 min for large datasets (>70,000 cells).

PACS enables parametric multi-factor model testing for accessibility

Identifying the set of CREs regulated by certain physiological cues is essential in understanding
functional regulation. For example, differentially accessible region (DAR) analysis tries to
determine if there are cell type-specific chromosomal accessibility differences. Most snATAC-seq
pipelines adopt RNA-seq differential expression methods to ask whether a peak belongs to a DAR.
These approaches generally lack calibration for sparse ATAC data, and the approach of pairwise

DAR tests does not allow testing more complex models that might determine peak accessibility
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(e.g., combination of spatial location, batch effects). With existing methods for DAR detection,
commonly adopted approaches are to ignore other factors or stratify by other factors to test the
factor of interest, if the independent variables are nominal (e.g., cell types). However, such tests
involve ad hoc partition into levels of the nominal factor and cannot test more complex models

including possible metric variables (e.g., developmental time).

To evaluate the performance of the parametric test framework in PACS, we first used simulated
data to test the standard setting of a single factor model (cell types) for type I error and power, for
PACS and four existing methods: ArchR?®, Seurat/Signac!é, snapATAC'5, and Fisher’s exact test.
ArchR conducts the Wilcoxon rank-sum test on the subsampled cells from the initial groups, where
the number of sequencing reads between two subsamples is matched. Seurat utilizes the standard
logistic regression model?®, but with group labels as the dependent variable and read counts and
total reads as independent variables. The sparsity problem that can result in perfect separability is
not resolved in this method. SnapATAC conducts a test on the pseudo-bulk data of two groups and
utilizes the edgeR?® regression-based test on the pseudo-bulk data with a pre-defined ad hoc
variance measure (biological coefficient of variation, bve = 0.4 for human and 0.1 for mouse data).
To resemble real data, simulated samples were generated by parameterizing the model with the
accessibility and capturing probability estimated directly from the human cell line dataset?.
Regions with non-trivial insertion rate differences (i.e., effect size greater than 0.1) were
considered to have true cell type effects, while the remaining regions were set to the same insertion
rates as their average rates, and thus having no differential effect. We randomly sampled 10,000
non-differential features to assess the type I error and 10,000 differential features to evaluate power,
with varying numbers of cells in each group (from 250 to 1000). Fig. 3a shows that PACS
controlled type I error at the specified level across all conditions. Among the methods that control
type I error, PACS has on average 17%, 19% and 122% greater power than Fisher’s exact test,
ArchR and snapATAC, respectively (Fig. 3b, Supplementary Table 2). The reduced power of
ArchR is likely due to the subsampling process, and the ad hoc “bvc” choice in snapATAC may
result in a miscalibrated test with a low type I error and power. The g-q plots of the five methods

are shown in Supplementary Fig. 2a-e.
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To evaluate the performance under a multi-factor model, we next simulated another snATAC-seq
dataset with two spatial locations (S1 and S2) and two cell types (T1 and T2). We introduced
sample imbalance by setting S1 to contain 1600 T1 cells and 800 T2 cells, and S2 to contain 400
T1 cells and 1200 T2 cells. The spatial effect term was considered to affect features both with and
without cell type effects. Specifically, one-third of the features with (and without) cell type effects
were assumed to also have spatial effects, with fold change in accessibility of 0.75 or 0.125. For
the methods that cannot directly test effects for multiple factors, two strategies were used. The first
is called the “naive test”, where spatial location is ignored, and the test is conducted between two
cell types. The second is called the “stratified test”, where we stratified the dataset by spatial
location and conducted a pairwise test between cell types on each stratum, followed by using the
standard Fisher combination test to combine p-values (Methods). Across all methods and test
strategies, only snapATAC (naive and stratified), ArchR-stratified, and PACS controlled type I
error at the specified level (Fig. 3¢); PACS remained the most powerful test and detected 7.6, 5.9,
and 1.2-fold more true differential peaks compared with those identified by snapATAC-naive,
snapATAC-stratified, and ArchR-stratified, respectively (Fig. 3d, Supplementary Table 3).

We then simulated a time-series dataset with five time points, to evaluate our model performance
for ordinal covariates. We assumed two temporal trends of accessibility, linear and quadratic trends.
To put this in a biological setting, the quadratic trend may represent the presence of an acute spike
response and the linear trend may represent temporally accumulating chronic responses. The
PACS framework could detect both linear and quadratic signals, and its power is dependent on the
“effect sizes” defined as the log fold change of accessibility between the highest and lowest

accessibility (Fig. 3e-f).

We also evaluated the PACS model in real datasets. As the ground truth is unknown, we utilized
a sampling-based approach. We used randomly permuted cell type labels to estimate the type I
error. To evaluate power, we conducted tests on cell types and treated the consensus DAR set from
all methods as “true DARs” (after type I error control, see Methods). For the standard two-group
DAR test, our method consistently controlled type I error and achieved high power, across

different datasets (Fig. 3g-h, Supplementary Fig. 2f-i).
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Taken together, we demonstrated with simulated and real datasets that PACS is a flexible test

framework with well-calibrated test statistics.

PACS identifies kidney cell type-specific regulatory motifs and allows direct batch correction

One important feature of PACS is its ability to handle complex datasets with multiple confounding
factors. To test the performance of PACS, we analyzed an adult kidney dataset with strong batch
effects®. This dataset contains three samples generated independently (in three batches), and the
authors identified a strong batch effect. Existing methods for batch correction map the ATAC-seq
features to a latent vector space to subtract the batch effects. For example, the original study® relies
on Harmony?’ to remove the batch effect in latent space for visualization and clustering, but the
batch effect is still present in the peak feature sets, which could confound downstream analyses

and inferences.

To remove the batch effect at the feature level, we assume that the batch effect will affect (increase
or decrease) the accessibility of certain peaks, and these effects are orthogonal to the biological
effects. This assumption is necessary for most of the existing batch-effect correction methods (e.g.,
MNN3!, Seurat®?, and Harmony?"), as a matter of experimental design. With this assumption, we
applied PACS on the adult kidney data, detected significant DAR peaks among batches (P value
< 0.05 with or without FDR correction) and removed batch-effect peaks from the feature set. We
next implemented Signac to process the original data as well as the batch effect-corrected data,
without any other batch correction steps. Dimension reductions with UMAP suggested that the
original data contained a strong batch effect, where almost all cell types are separated by batch
(Fig. 4a-b). After removing the peaks with strong batch effects, the cells are better mixed among
batches (Fig. 4c-d, Supplementary Fig. 3a-b). Note that different cell types are still separated,
suggesting the biological differences are (at least partially) maintained. Since UMAP visualization
may not fully preserve the actual batch mixing structure, we adopted a batch mixing score from
Ref.* to quantify the batch effect in the PCA space. The batch mixing score is defined as the
average proportion of nearest neighbor cells with different batch identities, where a higher score
indicates better mixing between batches, and thus a smaller batch effect (Methods). We

normalized the mean batch mixing score by dividing it by the expected score under the random
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mixing scenario. After batch effect correction with PACS, the normalized mean batch mixing score

is 0.358 or 0.417 compared with 0.122 before batch correction.

We next applied our method to identify cell type-specific features while adjusting for batch effect.
We focused on the two proximal tubule subtypes, proximal convoluted tubules (PCT) and
proximal straight tubules (PST). By fitting our mcCLR model with cell type and batch effect, we
identified 19,888 and 62,368 significant peaks for PCT and PST, respectively (FDR-corrected P
value < 0.05, Supplementary Tables 4-5). The original study utilized snapATAC, which reported
23,712 and 36,078 significant peaks for PCT and PST, respectively. With the batch-corrected
differential peaks, we then conducted GREAT enrichment analysis®*** to identify candidate PCT-
and PST-specific genes (Supplementary Tables 6-7). We identified Ge, Nox4, Sic4a4, Bnc2,
Slc5al2, and Ndrgl genes as top PCT-enriched genes, and Ghr, Gramdl1b, Etv6, Atplla, Gsel,
and Sik! as top PST-enriched genes. The associated genomic pile-up figures for the CREs of these

genes are shown in Fig. 4e, and these findings were supported by a public scRNA-seq dataset*®

(Fig. 4f).

PACS dissects complex accessibility-regulating factors in the developing human brain

We applied our method to the human brain dataset!!, which is more challenging due to the complex
study design with cells collected from six donors across eight spatial locations. Substantial
sequencing depth variations among samples has also been noticed, which further complicated the
analysis (Supplementary Fig. Sa-c). To study how spatial locations affect chromatin structure,
the original reference focused on the prefrontal cortex (PFC) and primary visual cortex (V1)
regions, as they were the extremes of the rostral-caudal axis'!. With the multi-factor analysis
capacity of PACS, we conducted analyses to (1) identify the region effect, while adjusting for the
donor effect, (2) identify the cell-type specific region effect.

We first examined the marginal effect of brain regions on chromatin accessibility, holding other
factors constant (Methods). For this, we focused on a subset of three donors where spatial
information is retained during data collection (Fig. 5a-c, Supplementary Table 8). In total, we
identified 146,676 brain region-specific peaks (FDR corrected P value < 0.05). Between PFC and
V1 regions, we identified 30,455 DAR peaks, ~20% more compared with the original study

11
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(Supplementary Tables 9-10). With the region-specific DARs, we conducted motif enrichment
analysis to identify region-specific TFs. For the PFC and V1 regions, we found several signals that
were consistent with the original article!!, including PFC-specific motifs MEISI, TBX21, and
TBRI1, and V1-specific motifs MEF2B, MEF2C, MEF2A, and MEF2D. Moreover, we identified
additional V1-specific motifs E7S and ZIC?2 (Fig. 5d), supported by the scRNA-seq data collected
from the same regions®’. We also noticed that some neuron development-associated TFs, including
OLIG2 and NEUROG?2, are enriched in both brain regions but with different binding sites, likely
due to different co-factors that open different DNA regions. Motif enrichment results for both brain

regions are reported in Supplementary Tables 11-12.

Next, we used PACS to examine the location effect across different cell types along excitatory
neurogenesis. This corresponds to testing the interaction terms between spatial location and cell
types, while adjusting for donor effect (Fig. Se). The previous study reported that the chromatin
status of the intermediate progenitor cells (IPC) population started to diverge between PFC and
V1 regions. Consistent with the article, we identified 2773 significant differential peaks between

PFC and V1 at IPC stage, 52% more than snapATAC (Supplementary Table 13).
In sum, we show the implementation of PACS for data with three levels of factors: donor, spatial
region, and cell type. PACS can be applied to study one factor or the interaction between factors

while adjusting for other confounding factors, and test results have higher power.

PACS identifies time-dependent immune responses after stimulation

The existing methods for DAR detection rely on pairwise comparisons, and thus are not applicable
to ordinal or continuous factors. One such example is the snATAC-seq data collected at multiple
time points. Here, we apply PACS to a peripheral blood mononuclear cell (PBMC) dataset
collected at three time points (Oh control, 1h, and 6h) after drug treatment®®. Multiple treatments
have been applied separately to cells collected from four human donors. While PACS can
simultaneously model all drugs and conditions, we focus on the ionomycin plus phorbol myristate
acetate (PMA) treatment to demonstrate the PACS workflow. The factors included in the PACS
model are shown in Fig. 6a, where cell type and donor effects are categorical, and the time effect

is coded as an ordinal variable. Note that time can be alternatively coded as a continuous variable.
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We tested the treatment effect by identifying open chromatin regions that show a gradual increase
or decrease in accessibility after treatment. In total, we detected 35,356 peaks with a strong
treatment effect across five broad cell types (B cell, CD4 T cell, CD8 T cell, Monocyte, and NK
cell, Supplementary Tables 14-16). Across the cell types, CD4 and CDS8 T cells show the most
significant changes in chromatin landscape after treatment (Fig. 6b-c). This is expected, as PMA
can induce T cell activation and proliferation®®. Among the peaks with significant PMA treatment
effect, most become more accessible after treatment, consistent with the activation function of the
treatment. We then conducted gene enrichment analysis with GREAT?®, where we identified
several GO pathways associated with T cell activation, such as “regulation of T cell differentiation”
and “regulation of interleukin-2 production” (Supplementary Table 17). We also identified
enriched genes including DUSP5, ILIRLI, TBX21, and CXCR3 (Supplementary Table 18),
expression of which have been previously reported to be up-regulated in PMA treatment#0:4!1:42:43,
Notably, DUSP5 is known to play an essential role in the immune response through regulation of
NF-«B as well as ERK 1/2 signal transduction*, and TBX21 is an immune cell TF that also directs
T-cell homing to pro-inflammatory sites via regulation of CXCR3 expression®. Fig. 6d-e showed
the cell type-specific open chromatin landscape dynamic after the PMA treatment. We noticed that
some CREs respond to the treatment effect across all cell types and some CREs become activated

in only certain cell types.

Discussion:

Single-cell sequencing data is characterized by uneven data capturing and data sparsity. For
scRNA-seq data, data normalization has been an essential step for adjusting for uneven data
capturing; however, in scATAC-seq data, such a notion does not exist, which remains a challenge
for data analysis. Here, PACS resolves the issue of sequencing coverage variability in sScATAC-
seq data by combining a probability model of the underlying group-level accessibility with an
independent cell-level capturing probability. We applied PACS to tasks of (supervised) cell type
annotation, showed its improved performance compared with the Naive Bayes model that does not

consider cell-specific capturing probability.
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With more data being generated for different tissue conditions, atlas-level data integration is
essential for understanding tissue dynamics under various conditions. The cell type annotation
framework enabled us to transfer the cell type annotation from reference dataset to another dataset,
which resolves one challenge in integrative data analysis. Another challenge of data integration is
to jointly model various factors (e.g., cell type, spatial locations) that govern cellular CRE
activities. Standard GLM framework could not address the uneven data capturing in snATAC-seq
data, so we developed a statistical model that extends the standard GLM framework to account for
cell-specific missing data. By utilizing this missing-corrected cumulative logistic regression
(mcCLR) model with regularization, PACS can conduct multi-covariate hypothesis tests and can
be used for spatial and temporal data analysis. Here we analyzed three empirical datasets from
brain, kidney, and blood samples to show the utility and flexibility of our framework in large,

complex datasets.

We have previously derived a parametric model of the snATAC-seq read count, called size-filtered
signed Poisson distribution (ssPoisson)!’. Here, we treat the insertion rate as a latent variable and
directly model the paired insertion counts (PIC) of the data with an extended cumulative logistic
regression model, which enabled fast and efficient computation. Future research will be conducted
to explore the potential of parametric distributions. In summary, PACS allows versatile hypothesis
testing for the analysis of snATAC-seq data, and its capability of jointly accounting for multiple
factors that govern the chromosomal landscape will help investigators dissect multi-factorial

chromatin regulation.
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Methods
Data availability

We downloaded the following snATAC-seq datasets from public repositories:
mouse kidney data® (GEO GSE157079,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157079),

human cell line data®® (GEO GSE162690,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162690),
developing human brain data'' (GEO GSE163018,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163018),
marmoset brain data?’ (the Brain Cell Data Center RRID SCR_017266; https://biccn.org/data),
human PBMC time-series stimulation data’® (GEO GSE178431,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178431).

Probabilistic model of underlying open chromatin status

Here we model the activity of regulatory elements in each cell type group by the cumulative
distribution of the accessibility. The underlying accessibility for a CRE is a function of nucleosome
density and turnover rate. As we discuss in the main text, for a particular cell group, the chromatin
state should be regarded as a random variable as they are sampled from mixtures of hidden
microstates. Here, we expanded the model of accessible chromatin from Ref'”. Briefly, let F¢; be
a design matrix that summarizes known independent variables (e.g., cell type, developmental time,
sample locations, etc.) across C cells, Y-y be the underlying (latent) chromatin status across C
cells and M regions, where each element represent the accessibility of a genomic region. The goal
of PACS is to decompose the (complementary) cumulative distribution of Y., i.e., the series of

distributions:

P{Y,, 2t} =Y1_,mfort =12,..,T (Eq. 3)

by predictive independent variables in F,.,. Here the maximum value of accessibility we account
for, T, is feature specific. To be precise, for a feature m, T is the largest integer such that

Ye 1(Zom = t) = n, where n, is a hyperparameter. In our study, n. is set to be 0.25C but based

on our evaluation, our model is not sensitive to the choice of n..
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Model for capturing probability of cell

Due to various experimental factors like enzyme activity and sequencing depth disparities across
cells, we introduce Ry, as a matrix representing the capturing status of each cell and region. Let
Zcxm be the (observed) scATAC dataset, we have Z = Y®R, where & denote element-wise
Product. We consider R, to be sampled from a Bernoulli distribution parameterized by q., cell-

specific capturing probability:

R.,, ~ Bernoulli(q,) (Eq. 4)

Joint parameter estimation for single-factor scenario

Given a class of data that correspond to a combination of levels of independent variables, we
follow the same parameter estimation framework as described in Ref!’. Briefly, assume we have
a genomic region-by-cell (i.e., peak-by-cell) matrix Z. XM with Cr denoting the subset of cells
corresponding to some combination of the independent prediction factors. The observed values in

Zcfo are ordinal values, but as most of the non-zero scATAC-seq counts are one

(typically >70%), we focus on P(Y, m 2 1) for purposes of g, estimation. Hereafter, we use the
notation pg)m to represent the (non-zero) open probability of group Cr and feature m. We have

further assumed g, to be identical across different levels of accessibility for a given cell. Due to
the data sparsity and the predominant counts of one, this assumption is moderate, and the

estimation process will be greatly accelerated with this assumption. We use moment estimator with

a coordinate descent algorithm to iteratively update pg)m given q., and update g, given pg)m .

Briefly, we execute the following iteration until convergence:

1. Start with an initial estimate of p,[,g]
2. Fort=1,2,..
a. Compute qE’L] by:

M >
gl = Im=lCem®D) g0 e
Ym=1Pm

b. Update p,[,l;] by moment estimator:
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e 1(zcm=1)
_r[rl;] = ecf—[t]form € {1;2; 'M}
ZCEquc

where we use superscript [t] to represent the t™ iteration, and we omit the subscript Cr and

(1)

superscript (1) for P¢ m:

Uniqueness of parameter estimation

In order for the above joint parameter estimation framework to converge and for the estimated
parameters to be uniquely defined, there should be g, = 1 for some cells and pg)m = 1 for some
features. In PACS, we conduct a convergence check by requiring a certain proportion of cells
(default 10%) to have an estimated capturing probability greater than 0.9. In the case of a cluster
of cells being rare or not sufficiently deeply sequenced, the estimates may be unstable, and we
recalibrate the estimates for this rare cluster to its most similar cluster to prevent potential false

positives. Specifically, let ¢, index the rare group of cells; then, to identify the cell groups with

®

1
Crov and p( ) for

the most similar open chromatin profile, we compute the correlation between p Crje

all other clusters j = 1, ...,J, across all regions. Assuming C¢, has the most similar chromatin

profile, we rescale the current estimation of pg)lm by the following formula:

S = Zm pgclm /Zm p((:jc)lm

Pe). = P, XS (Eq. 5)

where S is the scale factor, pg)l'm is the rescaled open probability estimate for the cluster Cr, and

feature m, and through rescaling, we are essentially assuming that most peaks are not differentially

accessible between these two cell types.

Cell type label prediction framework
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Given a reference dataset, we estimate the probability of open chromatin pé;)m for each cell type

4

g € {1, ..., G}, using the formula above. With a new set of observations Z . ,,, we apply the Bayes

discriminative model to predict the corresponding cell type labels, h(Z.,).

P(h(Zc) = glZt) = P(Ze.|h(Z) = g)P(h(Z:) = 9)

Zém 1—ZL"m
= P(h(ZL) = ) her (i) (1= Py 4c) (Eq. 6)

where P(h(Z¢,) = g|Z¢.) represents the posterior probability of cell ¢ being sampled from cell
group g, P(Z..|h(Z[,) = g) represents the conditional probability of observing Z;, given that the
cell ¢ is sampled from cell type g, P(h(Z.,) = g) is the prior probability of a new observation
belonging to cell group g, which can either be assumed to be a non-informative Dirichlet prior
Dirich(&) or estimated based on the cell type composition in reference data. Note that we have a

large feature space so this choice will not make a big difference.

Missing-corrected cumulative logistic regression (mcCLR)

Due to high sparsity of scATAC-seq data, perfect separability is common, hindering the parameter
estimation in (Eq. 1). To address this issue, we incorporated Firth regularization (Eq. 2). Here we
summarize the (unregularized) log likelihood function and information matrix for the cumulative
response model and derive the analytical expression for the binary model. The loss function when

considering cumulative response is

logL(T, y|q) = X1 Xizolog (c)l(z; =1t) (Eq.7)

where C represent the total number of cells, ., and 7., represent the probability of ¢ PIC counts
in cell ¢ before and after accounting for cell-specific capturing probability, respectively.
Specifically, m, = P(y, =t) —P(y, =t + 1), I, = (e, Te1, Tegy oon, Tep) 728 and 11, =
Q.I1., where Q. is the capturing probability matrix of dimension (T + 1) X (T + 1) specified as
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1 1-q. 1-¢q. .. 1—q,
0 q. 0

=0 o qc : (Eq. 8)
0 qc

In our PACS model, an approximated estimation of parameters in the cumulative logit model were
obtained using a method described in a previous set of studies*®*7 that based on stacking the data

and optimize with binary logistic regression specified by

logL(p, z|q) = X&4[zc log(peqc) + (1 — z)log(1 — peqr)] (Eq.9)

1(B) = FTWF where W = dlag{%ﬁf”} (Eq. 10)

where p. = P(z, = 1).

Parameter estimation for mcCLR

We implemented both Newton’s method and the Iterative Reweighted Least Squares method
(IRLS) for parameter estimation. Briefly, for Newton’s method, B is estimated through the

following iteration

D = B 4 1’—1(3(5))U*(ﬁ(5)) (Eq. 11)

where the superscript s represents the iteration, I’ = I for the full model and I" = I_¢4; for the null

model of B¢sy = 0. The score function U* () is given by:
{d}

U*(B,) = UB,) + ;trace [I(ﬁ) 1 a’(l‘)

cr\Jc CC1C
=£1x”£3<“+ Seoi forkrhy, (r=1,..p) (Eq.12)

where the h,'s are the c™ diagonal elements of the “hat” matrix, H = WY2F(FTWF)~1FTwW/2,
and k. = (2pzqc —3pc + 1) / (1 — peqc).
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For the IRLS method, the information matrix / is replaced with an estimate of the information

matrix, I,

~ ~ ~ —p2g2 1) =z —
I(ﬁ) — FTWF, where W = dlag{—[ chc+CIc(2(I71c_+pZLq 1))2 Zl]pc(l pc)} (Eq 13)

Hypothesis testing framework of mcCLR

We utilized a generalized likelihood ratio test framework for hypothesis testing with the mcCLR
model, although a Wald-type test can also be derived. As the model contains Firth regularization,
we used the profile penalized likelihood approach to obtain P values?>#8, Specifically, in the null
model, the coefficients of interest are set to zero but still left in the model, so that the regularization

accounts for the presence of these parameters during optimization.

Data simulation for single factor differential test

To mimic real data, we estimated insertion rates (A fm) and g, from the human cell line data and

use these values to construct simulated data. Briefly, because viable snATAC-seq reads come from
two adjacent Tn5 insertion events that have the right primer configuration (reviewed in*), we
derived the size-filtered signed Poisson (ssPoisson) distribution to model this data generation
process!’. With the observed counts, we estimated the insertion rate parameters for two cell types,
and regions with true open probability difference greater than 0.05 were set to be as true differential
(Ha) and the remaining region’s open probabilities were set equal (by taking the mean) and
therefore non-differential (Ho). Based on parametric model of latent and observed accessibility,

we first sampled the latent ATAC reads by ssPoission(A, fm) for f = 1,2, and then sampled the

observing status by Bernoulli distribution parameterized by q.. The observed data were generated
by the element-wise product of these two matrices. We randomly sampled 10,000 non-differential
features to assess the type I error and 10,000 differential features to evaluate power. This
simulation was conducted under varying numbers of cells in each group (from 250 to 1000), and

each scenario was repeated 5 times.

Data simulation for multi-factor differential test
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Building upon the single factor setting, we further assumed the data to contain two cell types (T1
and T2) being sampled from two spatial locations (S1 and S2). The goal was to infer cell-type-
specific differential features while accounting for the spatial effect. We introduced sample
imbalance as frequently seen in real datasets. To be precise, we considered that S1 contained 1600
T1 cells and 800 T2 cells, while S2 contained 400 T1 cells and 1200 T2 cells. The spatial effect
was considered to affect features both with and without a cell type effect. Specifically, a third of
the features with (and without) a cell type effect showed an accessibility difference across batches,
with a fold change of 0.75 or 0.125. The peak by cell count data generation procedure is the same

as for the single factor setting.

Data simulation for time-series differential test

To evaluate model performance in situations where the design matrix contains ordinal covariates,
we simulated time-series snATAC-seq data across five time points. We assumed linear and
quadratic temporal effects on accessibility and set the effect size (log fold change) to be 0.3 or 0.5
between the two groups. The baseline accessibility was generated from the cell line data and the

peak by cell count data generation procedure is the same as for the single factor setting.

Evaluating type I error and power in real datasets

To estimate type I error in real data where the ground truth is unknown, we used a label
permutation approach, where the data in one cell type were divided randomly into two groups, and
a differential test was conducted between these groups. As this is randomly assigned, all features
were believed to be non-DAR, so the proportion of P values smaller than 0.05 is the empirical type
I error using real data. Then, we set the fifth rank percentile as the correct critical value for those
methods with type I errors greater than 0.05. We next conducted a test with two different cell types
using the calibrated critical values for each method. Since we do not know the true DAR set, we
defined the pseudo-true DAR peaks as the union DAR set of all tested methods, using their
corresponding new critical values. Power for each method was then calculated by the number of

DARs detected divided by the number of pseudo-true DARs. This approach is adopted from Ref.!”.

Estimating effect size (fold change and accessibility change)
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A common practice to determine differential features in single cell data is by setting a cutoff for
both P value and fold change. In scRNA-seq data analysis, one way to estimate the effect size of
a particular variable (predictor) is by calculating the fold change (FC) for the normalized data,
obtained by dividing the normalized mean expression of one group by the other group. However,
with snATAC-seq data, there is no direct normalization method available, and computing the fold
change on raw read counts may lead to inaccuracies due to disparities in data capture. Here, we
propose to use the capturing probability-adjusted count to compute fold change (FC) or the
arithmetic difference between accessibility (accessibility change, AC) of two cell types. To be

precise:

ZC ZCm (4
FC = Zcec1 Zom/ dc AC = ZCECl Zem/qc — ZCECZ Zem/qc (Eq.14)

ZCECZ Zem/ac’

where m is the feature of interest and C; and C, are the lists of cells that contain foreground and

background cell types.

Processing kidnev adult data with Signac

We used Signac!® to evaluate the effectiveness of our method in correcting for batch effect at the
feature level. We follow the standard workflow as recommended in the Signac vignette
(https://stuartlab.org/signac/articles/pbme_vignette.html). Briefly, we used the TF-IDF approach
without feature selection (min.cutoff = ‘q0’), followed by SVD to reduce dimensionality. We then
conduct clustering and UMAP visualization using the dimensions 2 to 30 (as the first LSI
dimension usually reflects sequencing depth, per the Seurat tutorial). The sample and cell type

labels are retrieved from the annotations in the initial publication.

Batch mixing score calculation

We calculated the batch mixing scores in the PCA space as a measure of batch effect. At the cell
level, the batch mixing score is adopted from Ref.?* and is defined as the proportion of nearest
neighbor cells with different batch identities, where a higher score indicates better mixing between
batches, and thus a smaller batch effect. At the whole data level, the batch mixing score is defined
as the mean batch mixing score across all cells. To calculate the expected batch mixing score for

a given dataset when no batch effect is present, let M denote a cell type-by-batch matrix, with each
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element m;; representing the number of cells in the cell type i and batch j. Then the expected data-

level batch mixing score in the setting of no batch effect is given by

1
i, Mij

L3, my Gl (Eq, 15)

E[batch mixing score] = S
kMik

The normalized batch mixing score is the batch mixing score divided by the expected score under
random mixing, and thus a higher normalized batch mixing score indicates better mixing across

samples.

Processing developing human brain data

This dataset contains 18 specimens collected from human donors. For our study, we excluded
samples with unknown spatial locations (GW17, GW18, GW21) or samples not from the cortex
(MGE_GW20 and MGE _twin34). Here we focused on the excitatory neuron lineage, including
radial glia (RG), intermediate progenitor cells (IPCs), early excitatory neurons (earlyEN), deep
layer excitatory neurons (dIENs), and upper layer excitatory neurons (ulENs). We further excluded
the insular region for having too few cell counts (645 cells across five cell types). The data matrix
was saved as a binary matrix, so we implemented the missing-corrected logistic regression model

for the analyses of this data.

DAR identification in the developing human brain data

We constructed two models to identify the significant region effect of the excitatory neuron lineage.
Specifically, to identify the region effect, the systematic component of the PACS model is

specified as:

a + Zlk<=2 Ykl(Gc = gk) + ZlL=2( 1(SC = Sl) + thw=2 Tml(DC = Dm) (Eq 16)

where G is the index of cell type, S is the index of spatial location, and D is the index of the donor.
The null hypothesis for the test is Hy: { = 0. To identify the cell type specific region effect, we
additionally included the interaction terms between each cell type and spatial location, and the test

was conducted for each interaction term.
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Motif enrichment analysis

The motif enrichment analysis was conducted with Homer*°. The list of significant DAR peaks is
used as input for the analysis, with the size of the search region specified as 300 bp around the
peak center. The reported motif enrichment scores are FDR-corrected P values from the known

motif results.

DAR identification in the human PBMC treatment data

To identify the cell type-specific temporal effect in the PBMC treatment data, the systematic
component of the PCAS model is specified as:

a + Yi=2vkl(Ge = gi) + kE+ XL, 0, 1(D. = D)  (Eq. 17)
where G is the index of cell type, E is the experimental time index (0, 1, 2 corresponds to control,
1h, and 6h after treatment, respectively), and D is the donor index. The null hypothesis for the test

iSHO:K == 0.

Gene and pathway enrichment with GREAT

We used the GREAT method (v. 4.0.4) to conduct gene and enrichment analysis**, with DARs as
input and default parameter settings. The output from GREAT for the human PBMC data can be
found in the Supplementary Tables 17-18.

Figure legends:

Figure 1. PACS modeling framework.

Upper panel: Illustration of the latent accessibility of cells. Multiple factors including cell types,
developmental stages, spatial locations etc. determines the chromatin structure and configurations
of corresponding cell groups. These different chromatin structures result in the variable Tn5
insertion rates in the ATAC-seq experiments. The readout of ATAC assays are paired insertion

counts (PIC), which are crude measures of latent insertion rates.
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Lower panel: Illustration of the sequencing reads capturing process of snATAC-seq. During PCR
and sequencing, fragments in each single cell are partially captured, and after data processing,

variable capturing probability should be accounted for in data modeling.

Figure 2. Parameter estimation evaluation and application to cell type annotations.

a-d. Parameter estimation accuracy evaluated using simulation data. Here p represents P(y >= 1)
and q represents the capturing probability. For this panel and all panels below, the error bars
indicate the standard deviation across repeated simulations (n=5).

e. Comparison of cell type annotation adjusted rand index (ARI) between PACS and Naive Bayes
method.

f. Confusion matrix between true cell type labels and PACS-inferred cell type labels for the human
cell line mixture data (low cell loading setting). The confusion matrices for other datasets are in
the Supplementary Figure 1.

g. Confusion matrix between true cell type labels and Naive Bayes-inferred cell type labels for the

human cell line mixture data (low cell loading setting).

Figure 3. Compound hypothesis testing with PACS is sensitive and specific.

a-b. Type I error and power evaluation using single-factor simulation data.

c-d. Type I error and power evaluation using two-factor simulation data. Methods with “-n”
represents the setting of Naive test, where other factors are ignored when testing the factors of
interest. Methods ending with “-s” represent the stratified test where we stratify on other factors
and test the factors of interest within the strata.

e. [llustration of linear and quadratic effects of treatment on accessibility across time points. Effect
sizes are defined as the fold change between the highest accessibility over the lowest accessibility,
across five time points.

f. Evaluation of power in detecting linear and quadratic temporal effects using simulated data with
different effect sizes.

g-h. Type I error and power evaluation using empirical adult mouse kidney data.

Figure 4. Application of PACS to the mouse kidney dataset.
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a-b. UMAP dimension reduction plot constructed with all features (a) or after excluding features
with significant batch effect (b), colored by batch labels. Features with batch effect are detected
with PACS differential test module, and FDR multiple testing correction is applied.

c-d. UMAP dimension reduction plot constructed with all features (a) or after removing features
with batch effect (b), colored by cell types.

e. IGV plot of peak summits around cell type-specific genes identified by PACS, for PCT and PST
cell types. The list of cell type specific genes is generated with GREAT enrichment analysis using
differentially accessible peaks.

f. Heatmap of normalized gene expression z scores for the scRNA-seq data from male (-m) and

female (-f) kidneys. The list of genes match those from the panel f.

Figure 5. Application of PACS to the developing human brain data.

a. [llustration of the developing human brain dataset. The subset of data we analyzed are composed
of samples from three donors across six brain anatomical regions, and we focused on the excitatory
neuron lineage.

b-c. UMAP visualization of the data complexity, with points colored by cell type (b) or anatomical
regions (c). RG, radial glia; IPC, intermediate (neuro-) progenitor cells; earlyEN, early excitatory
neurons; dIEN, deep layer excitatory neurons; ulEN, upper layer excitatory neurons; M1, primary
motor cortex; Parietal, dorsolateral parietal cortex; PFC, dorsolateral prefrontal cortex; Somato,
primary somatosensory cortex; Temporal, temporal cortex; V1, primary visual cortex.

d. Motif enrichment results for PFC- and V1-specific peaks identified using PACS. PWM, position
weight matrix.

e. Accessibility z score of PFC and V1 peaks across five cell types.

Figure 6. Application of PACS to time-series dataset from human PBMC treatment data.

a. Factor landscape of the PBMC treatment dataset. Here, another layer of factor is the four
different treatments, which can also be jointly considered in the model, but for demonstration
purposes, we only focus on the PMA treatment effect. The control time point is considered as time
0, and the times of one and six hours after treatment are considered as time 1 and 2, respectively.

b-c. Summary of significant up- or down- regulated peaks after PMA treatment for each cell type.
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d-e. Heatmap of significant up- or down- regulated peaks after PMA treatment, grouped by time

point and cell type. The color scale (scaled acc) represents the accessibility z score.

Supplementary Figure 1.

a-b. Parameter estimation accuracy evaluated using simulation data. Here p represents P(y >= 1)
and q represents the capturing probability. For this panel and all panels below, the error bars
indicate the standard deviation across repeated simulations (n=5).

c-j. Confusion matrix between true cell type labels and PACS-inferred (or Naive Bayes-inferred)

cell type labels for four datasets.

Supplementary Figure 2.

a-e. Quantile-quantile plots for P values under the null for five testing methods, using simulated
data with no insertion rate difference.

f-i. Type I error and power evaluation using empirical cell line mixture data or marmoset brain

data.

Supplementary Figure 3.

a-b. UMAP dimension reduction plot constructed after excluding features with significant batch
effect (P value < 0.05, no FDR correction), colored by batch labels (a) or cell types (b). Features
with batch effect are detected with PACS differential test module.

Supplementary Figure 4.
a. UMAP dimension reduction plot constructed with all features, colored by batch labels. This
panel is identical to Fig. 4a, and is displayed here for examining feature plots in panels b-1.

b-1. Feature plots for top significant batch effect peaks determined by PACS.
Supplementary Figure 5.

a-c. Violin plots that summarize number of fragments in each cell across different donors (a), brain

regions (b), or cell types (c), for the human brain data.
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Supplementary Materials:

Supplementary Figures 1-5

Supplementary Table 1: Parameter estimation using simulated data

Supplementary Table 2: Type 1 error and power of different methods using simulated data (one-
factor setting)

Supplementary Table 3. Type 1 error and power of different methods using simulated data (two-
factor setting)

Supplementary Table 4. PCT specific peaks in the adult kidney data

Supplementary Table 5. PST specific peaks in the adult kidney data

Supplementary Table 6. GREAT gene enrichment results of PCT specific peaks

Supplementary Table 7. GREAT gene enrichment results of PST specific peaks

Supplementary Table 8. Number of cells in across spatial regions and donors

Supplementary Table 9. V1 specific peaks in the developing human brain data

Supplementary Table 10. PFC specific peaks in the developing human brain data

Supplementary Table 11. Homer motif enrichment results of the V1 region in the human
developing brain data

Supplementary Table 12. Homer motif enrichment results of the PFC region in the human
developing brain data

Supplementary Table 13. Number of differential peaks between PFC and V1 across excitatory
neuron lineage in the developing human brain data

Supplementary Table 14. Significant up-regulated peaks after treatment across cell types in the
PBMC treatment data

Supplementary Table 15. Significant down-regulated peaks after treatment across cell types in the
PBMC treatment data

Supplementary Table 16. Number of significant differential peaks after treatment across five cell
types, using PACS or ArchR

Supplementary Table 17. GREAT pathway enrichment results of up-regulated treatment effect
peaks in T cells

Supplementary Table 18. GREAT gene enrichment results of up-regulated treatment effect peaks

in T cells
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Code Availability

PACS is an open-access software available at the GitHub repository https://github.com/Zhen-

Miao/PACS. Codes for reproducing the analyses are also available at the GitHub page.
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Excitatory neuron differentiation

Motif PWM P value | P Adjusted Region
MEIST gggGXC Agg 1e-118 | <0.0001 | PFC
TBR1 %&IGIG Aeé 1e-78 | <0.0001 PFC
TBX21 gﬂﬁlgAé% 1e-26 | <0.0001 PFC
MEF2D i AIL :L‘Légg 1e-342 | <0.0001 V1
ETS AG(, AAéC A%glgg 1e-18 | <0.0001 V1
ZIC2 Qéc AGQéQGg%g 1e-3 0.0029 V1

Accessibility z score of PFC or V1 peaks across cell types
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