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Many different technologies are now available to measure 
various properties of any biological system. For instance, 
the same physical–chemical properties can be meas-
ured with different instruments (for example, by RNA 
sequencing or RNA microarray) and different physical– 
chemical properties can be measured for the same object 
(for example, the protein and RNA content of a cell). 
In the past few years, genome-​scale technologies have  
led to the systematic generation of very-​large-​scale 
quantitative datasets that comprise multiple measure-
ment modalities. Although such multimodal datasets 
have the potential to provide unprecedented insights 
into biological systems, their analysis and interpretation 
can be complicated due to modality-​specific technical 
problems and modelling challenges resulting from the 
need to draw common inference from different kinds  
of information.

The term ‘biological data integration’ has been used 
to describe analytic methods that combine information 
from multiple sources into a single biological infer-
ence. At one level, biological data integration might 
represent an extremely broad concept such as the inte-
gration of diverse information types, including data 
from Electronic Medical Records, genomic analyses, 
phenotypic assays and literature reviews, into a broad 
scientific model or hypothesis1. In this broad context, 

the term lacks technical meaning and is not pursued 
further here. Rather, we focus on biological data inte-
gration in the context of integrating large-​scale omics 
data, especially at the single-​cell level2,3. These types 
of data have a high-​degree of multiplexing, for example, 
with tens of thousands of gene measurements, leading 
to high-​dimensional datasets. If we consider the expres-
sion level of a single gene to be one ‘dimension’ of our 
dataset, then a set of 10,000 genes would create a data-
set of 10,000 dimensions. Each of these dimensions is 
commonly called a ‘feature’ of the dataset. Single-​cell 
measurements also tend to have considerable noise and 
technical artefacts — a problem that is somewhat coun-
terbalanced by the ability of new technologies to obtain 
measurements from thousands or even millions of cells, 
in a given tissue4,5. This large number of cell measure-
ments alleviates some of the problems associated with 
high-​dimensional data and high noise but creates addi-
tional challenges associated with high computational 
demand and biological complexity.

Despite the challenges associated with high-​dimensional  
data, high noise and large numbers of measurements, 
high-​throughput, single-​cell omics methodologies have 
already provided key insights into kidney biology. For 
example, single-​cell analyses have identified over 30 cell 
types along the continuous epithelial network; greater 

Multi-​omics integration in the age  
of million single-​cell data
Zhen Miao   1,2, Benjamin D. Humphreys   3, Andrew P. McMahon4 and Junhyong Kim   1,2 ✉

Abstract | An explosion in single-​cell technologies has revealed a previously underappreciated 
heterogeneity of cell types and novel cell-​state associations with sex, disease, development and 
other processes. Starting with transcriptome analyses, single-​cell techniques have extended  
to multi-​omics approaches and now enable the simultaneous measurement of data modalities 
and spatial cellular context. Data are now available for millions of cells, for whole-​genome 
measurements and for multiple modalities. Although analyses of such multimodal datasets have 
the potential to provide new insights into biological processes that cannot be inferred with a 
single mode of assay, the integration of very large, complex, multimodal data into biological 
models and mechanisms represents a considerable challenge. An understanding of the principles 
of data integration and visualization methods is required to determine what methods are best 
applied to a particular single-​cell dataset. Each class of method has advantages and pitfalls in 
terms of its ability to achieve various biological goals, including cell-​type classification, regulatory 
network modelling and biological process inference. In choosing a data integration strategy, 
consideration must be given to whether the multi-​omics data are matched (that is, measured  
on the same cell) or unmatched (that is, measured on different cells) and, more importantly, the 
overall modelling and visualization goals of the integrated analysis.

1Department of Biology, 
University of Pennsylvania, 
Philadelphia, PA, USA.
2Graduate Group in Genomics 
and Computational Biology, 
Perelman School of Medicine, 
University of Pennsylvania, 
Philadelphia, PA, USA.
3Division of Nephrology, 
Department of Medicine, 
Washington University in  
St. Louis, St. Louis, MO, USA.
4Department of Stem Cell 
Biology and Regenerative 
Medicine, Keck School  
of Medicine, University of 
Southern California,  
Los Angeles, CA, USA.

✉e-​mail: junhyong@ 
sas.upenn.edu

https://doi.org/10.1038/ 
s41581-021-00463-​x

REVIEWS

www.nature.com/nrneph710 | November 2021 | volume 17	

http://orcid.org/0000-0002-3255-9517
http://orcid.org/0000-0002-6420-8703
http://orcid.org/0000-0002-7726-8246
mailto:junhyong@
sas.upenn.edu
mailto:junhyong@
sas.upenn.edu
https://doi.org/10.1038/s41581-021-00463-x
https://doi.org/10.1038/s41581-021-00463-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41581-021-00463-x&domain=pdf


0123456789();: 

diversity probably exists in regional and sex-​related 
cell states among these groupings6,7. As another 
example, time series single-​nucleus RNA sequencing 
(snRNA-​seq) has been used to identify dynamic and 
spatially distinct pro-​inflammatory and profibrotic sub-
sets of proximal tubule cells that fail to repair after acute 
kidney injury7,8. Single-​cell data can also be combined 
with clinical parameters such as those regulated by the 
kidney, including blood pressure, blood pH, osmolarity 
and estimated glomerular filtration rate. One single-​cell 
transcriptomic profiling study of human kidneys with 
estimated glomerular filtration rates above and below 
60 ml/min/1.73 m2 identified AP1 and NKD1 as candi-
date drivers of kidney fibrosis in patients with chronic 
kidney disease9.

The abovementioned studies uncovered novel 
insights into kidney biology using single-​cell tran-
scriptomics alone. However, in the past 5 years, many  
single-​cell measurement modalities beyond single-​cell  
transcriptomics have been developed, including 
approaches to measure multiple data types in the same 
cell (so-​called multi-​omics single-​cell data). More than 
30 single-​cell multi-​omics techniques10,11 have been 
developed since 2015. Although these techniques offer 
invaluable opportunities to interrogate the properties of 
cells, the integration of information from these different 
modalities presents an acute challenge. The high dimen-
sionality, high noise and large number of observations 
underlie this challenge, in which the goal is to reconcile 
and make comparable distinct modalities into a coherent 
biological inference.

Even without explicit computational integration, 
combining information from different genome-​scale 
data types can yield synergistic inferences. For example, 
cell-​specific gene expression data can be coupled with 
chromatin status information in the region of an SNP 
variant, enabling the prioritization of causal variants 
for further experimental validation12. Multimodal data 
often augment independent evidence from each mode. 
For example, one study13 found that a single-​nucleus 
assay for transposase-​accessible chromatin using sequencing 
(snATAC-​seq) refined kidney cell-​type clusters obtained  
via snRNA-​seq, revealing more clusters with potential 
clinical relevance. In another study, use of both single-​cell 
RNA sequencing (scRNA-​seq) and snATAC-​seq enabled 
the identification of a cell-​specific regulatory network 

by inferring upstream regulators from analyses of cis- 
element motifs14. In that study, the identification of  
cis-​regulatory elements with ATAC-​seq helped overcome 
difficulties in detecting regulatory genes, such as tran-
scription factors, in transcriptome data because of their 
low abundance. This study and others exemplify that the 
use of multiple modes of omics information can enable 
combined inferences that cannot otherwise be obtained 
from any single mode. Thus, the integration of multi-
modal omics data has the potential to synthesize more 
knowledge than would be gained as a sum of individual 
measurements.

Here, we review developments in computational 
methods for multi-​omics data integration. We first pro-
vide a general overview of the principles of data integra-
tion. Next, we take a more practical data-​centric view of 
what methods might be applied to a particular dataset, 
starting with a discussion of methods for integrated 
analyses of multi-​omics data measured on the same cell,  
followed by a discussion of methods for integrated 
analyses of multi-​omics data measured on different 
cells. We then consider data visualization methods that 
can integrate different measurement modalities, and 
we finally discuss current and future challenges for 
single-​cell data integration and prospects for their appli-
cation to kidney biology. Throughout our Review, we 
focus on principles and general factors that determine 
the strengths and challenges of different approaches.

Overview of single-​cell data integration
As described above, available studies demonstrate that 
even ad hoc integration of multimodal data can yield 
inferences that cannot be made with a single mode 
of assay. Many principled computational methods 
are now available to aid the integration of single-​cell 
multimodal omics data, each with different advantages 
and drawbacks (Fig. 1). Here, we provide an overview 
of the general principles of these different approaches 
before describing methodological details in the next  
section.

Quantitative causal modelling. The most principled 
form of multimodal data integration is that which con-
siders the actual biological processes that generate the 
measurements (Fig. 1a). For example, chromatin states, 
RNA levels and protein levels represent different aspects 
of the single system-​level molecular dynamics of a cell, 
where a causal relationship exists between the epig-
enome state, the number of RNA molecules and the 
number of protein molecules. An accurate quantitative 
systems model of the cell (Box 1) uses associated multi-
modal measurements to estimate parameters with which 
to derive an integrated inference of the dynamic state 
of the cell. Some computational approaches incorpo-
rate partial systems models of the molecular dynamics 
of a cell. For example, the popular algorithm for RNA 
velocity15 posits a differential equation model of the 
kinetics of transcription, splicing and degradation, and 
estimates the parameters of the model using exonic  
and intronic reads, in effect integrating the two types 
of read data into a single model inference. The compu-
tational tool protaccel16 extends this kinetic model to 

Key points

•	With the development of single-​cell multi-​omics techniques, tools and models for 
data integration are critically important.

•	Integration problems in single-​cell biology can be divided into those associated with 
the integration of matched and unmatched data.

•	Strategies for integrating matched data include joint latent space inference, 
consensus of individual inferences and biological causal modelling.

•	Strategies for integrating unmatched data include annotated group matching, 
matching with common features and aligning spaces.

•	Visualization methods for integrated multimodal single-​cell data are still 
underdeveloped.

•	Future challenges include accounting for specific noise related to each modality, 
overcoming the need for computing efficiency and developing biologically 
interpretable integration strategies.

Assay for transposase- 
accessible chromatin using 
sequencing
(ATAC-​seq). A technique that 
profiles the accessibility of 
DNA elements based on the 
principle that the Tn5 
transposase can insert a 
transposon only at accessible 
parts of the chromosome. The 
insertion location is identified 
through DNA sequencing.

Cis-​regulatory elements
DNA elements proximal to a 
gene that are required for 
controlling gene expression. 
Such elements usually include 
promoters and enhancers, and 
often contain transcription 
factor-​binding sites.
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include a differential equation term for proteins, allow-
ing a model-​based integration of RNA and protein data, 
such as can be obtained using methods that enable the 
simultaneous measurement of proteins and mRNAs 
in single cells (for example, CITE-​seq17 and REAP-​
seq18). A cell systems model-​based data integration 
approach is ideal for the integration of multimodal data 
but currently impossible owing to the lack of depend-
able models for most dynamic molecular processes 
in a cell — especially of models that can predict the 
dynamics of small finite numbers of molecules in a sin-
gle cell or in complex processes such as chromosome  
remodelling.

Statistical modelling. In the absence of a causal kinetic 
model, another possible integration approach is to relate 
different measurement modalities to each other with a 
statistical model (Fig. 1b). For example, a statistical rela-
tionship could be modelled between RNA levels and 
protein levels19 or between the location and amount 
of open chromatin around a gene and its RNA levels  
(so-​called gene activity models20). Therefore, one possi-
ble class of methods for the integration of different data 
modalities is to create a statistical model between two 
or more modalities such that the value from one data 
type can be mapped to another type. Such models could 
be calibrated (that is, the model parameters estimated) 
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a  Quantitative causal modelling

b  Statistical modelling between features

c  Latent space inference

d  Consensus of individual inferences (late integration)
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Mapping
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Modelling of each modality separately

Consensus 
of two results

Fig. 1 | Frameworks for the integration of single-cell multi-omics data. Computational methods enable the 
integration of measured attributes (that is, features) obtained using multi-​omics approaches (for example, transcriptome 
and protein data) from single cells. These methods can be classified into four broad categories. a | Integration based  
on quantitative causal models. For example, the rates of RNA synthesis, splicing, translation and degradation might be 
modelled by differential equations and single-​cell multi-​omics data (for example, gene and protein expression data) can 
be used to fit the model. b | Statistical modelling between features. A statistical function is used to associate data in one 
modality to another modality, such that the two sets of features (again, for example, gene or protein expression data) 
can be harmonized into one modality for downstream analyses. Such models can be calibrated from reference datasets 
or potentially fit to the dataset of interest. c | Latent space modelling. Data from different modalities are assumed to  
be generated from a common latent space and integrated based on the assumption that specific mapping functions  
are able to map the common latent space onto different modalities. The latent space can be viewed as an integrated 
low-​dimensional embedding of the multi-​omics or multimodal data, and the mapping functions can be regarded as a 
model of the abstract latent space to real observations. d | Consensus of individual inferences (late integration). Analyses 
(such as clustering or dimension reduction) are performed for each individual data modality, after which the results are 
combined to obtain common consensus outputs or complementary evidence.
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from reference datasets or fit to the dataset of interest. 
When such an approach is used, in effect, all data points 
of one modality are converted to (mapped to) the other 
modality, potentially augmenting the power of the data-
set. The downside of this approach is that such transla-
tion does not provide additional insights into biological 
processes related to each data type since this process 
merely converts one data type into another.

Latent space modelling. Converting one data type to 
another can be seen as constructing a (mathematical) 
function (often called a map) between one set of varia-
bles and another. The idea that measurements are related 
by functions motivates a more abstract framework for 
data integration. We might model data of type A, type B 
and type C as a mathematical function from an abstract 
set of states, which we call ‘latent states’ or ‘latent space’ 

and the corresponding variables ‘latent variables’. More 
concretely, the transcriptome, proteome and chromatin 
states might all be considered an aspect of an abstract 
‘latent molecular state’ of a cell (Fig. 1c). That is, if the cell 
is in a latent state X, then mathematical functions of X 
will predict the number of RNA and protein molecules 
and the parts of chromatin that are open. Many machine 
learning methods (such as autoencoders; Box 1) and 
statistical methods (such as factor models; see below) 
involve estimating a latent space, assumed to determine 
the observed multimodal values. This latent space, in a 
sense, is a representation of the integrated data because it 
‘explains’ all of the observed data in different modalities. 
This concept of latent space from which the observa-
tions arise is one of the most common methods of data 
integration (as discussed below). Different approaches 
differ in the kind of mathematical functions that map 

Box 1 | Computational terminology

Model
The term ‘model’ is fairly generic. Here, we use the term ‘model’ in two 
different senses. In the first use, a model is a set of quantitative causal 
descriptions of biological processes, often abstracted to a simple form.  
An example would be a differential equation that describes RNA levels  
as a function of the rates of transcription, export and degradation.  
A second use of the term ‘model’ is to describe statistical models that relate 
measurements to each other; for example, a ‘linear model’ that relates 
latent space variables to observed variables as a linear mathematical 
function. This class of models might include more biology-​motivated 
models, such as a gene activity model that posits a statistical relationship 
between the number of cis open chromatin regions and levels of gene 
expression.

Machine learning
Machine learning (ML) is a family of computational models that tries  
to associate a set of input features to a set of output features. Typically, 
output features are discrete labels such as ‘proximal tubule cells’  
or ‘podocytes’. ML methods separate into ‘supervised’ methods and 
‘unsupervised’ methods. In supervised methods, some observations  
of ‘true’ label assignment are known; for example, input features  
might be gene expression and true cell-​type labels are available  
for some cells. Such ground-​truth data are called ‘training data’.  
ML methods try to tune (learn) various mathematical functions to find  
the association between input features and the known output features 
of the training data. In unsupervised methods, training data are not 
available and only input features are available for observations.  
The typical goal of unsupervised methods is to classify the input 
observations into groups (for example, clusters) to reveal their grouping 
patterns.

Neural networks and deep learning
A neural network (NN), sometimes called artificial NN to distinguish  
from biological brains, is a subset of ML methodologies motivated by  
the modelling of a biological brain. The basic idea is to associate input 
features to output features using a set of mathematical functions called 
‘nodes’. A node generates output values as a function of all the input 
values. Thus, a node emulates the metaphor of a neuron integrating all  
the synaptic input to an axonal output firing. Multiple nodes can be 
applied to the input features, each of which generates values, resulting  
in a set of values that can be treated as input features to another set  
of nodes. Each set of nodes used in this manner is called a ‘layer’.  
The complexity of the artificial NN can depend on the number of nodes in 
each layer, the number of layers, the input–output relationships between 
nodes and the type of mathematical function in each node. Deep learning 
is a non-​technical term used to refer to the development of methods  
that have a very large number of nodes and layers.

Regularization
Many statistical models can be complicated and overfit the data. For 
example, in the popular tSNE data visualization method, each data point 
has its own scale of distance, which can make pairwise relationships 
arbitrary. A common technique to prevent overfitting is to add some 
additional constraint, for example, a penalty for high model complexity,  
to prevent the model from being degenerate. For example, with tSNE,  
a constraint called ‘perplexity’ is introduced that constrains the observed 
data relationship to a certain pairwise distribution. The class of techniques 
used to constrain model complexity is called regularization. Regularization 
methods typically have a tunable parameter that controls how much 
regularization constraint is applied.

Manifold
In mathematics, a manifold is a smooth connected space that locally 
resembles Euclidean space (that is, space where distances between points 
can be defined as the square root of the sum of coordinate differences).  
In single-​cell studies, the term ‘manifold’ refers to the idea that ensembles 
of the cells may lie in a lower dimensional subset of the measurement space, 
which may have non-​linear characteristics such as curvature and local folds.

Loss function
In ML, loss functions are functions that need to be optimized to obtain the 
desired performance given the data and model. For example, in the ‘least 
squares’ regression model, the loss function is the sum of the squared error 
and, in Lasso regression, the loss function is the sum of the squared 
error with regularization of regression coefficients. The design of a loss 
function is key to a successful ML model.

Encoder–decoder
A commonly used architecture in ML, where a neural net is constructed 
with a set of nodes that map the input to a middle layer (encoder) and 
another set of nodes (usually the inverse of the encoder architecture) that 
maps the middle layer to an output (decoder). The middle layer is typically 
simpler than the input, for example, with lower dimensions, and tends to 
encapsulate an abstract characteristic of the input dataset. The decoder 
then attempts to map this abstracted representation back to some 
observable data. In an autoencoder, the decoder tries to recapitulate  
the input data. If successful, the middle layer is thought to represent the 
essential characteristics of the input data.

High-​performance codes
In programming, there are many different ways to achieve the same 
computation. Some algorithms are inherently faster than others. For the 
same algorithm, programmes can also be written differently to speed up 
the execution by careful use of hardware resources. High-​performance 
codes try to use the fastest algorithms and fine-​tune the programmes for 
optimal speed.
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from the latent space to observations (for example, lin-
ear functions versus non-​linear functions), in how they 
model the observed data (for example, as a probabilis-
tic observation from the latent space), in whether they 
model only in the vicinity of the observed data or the 
entire relationship between latent and measurement 
spaces, and in the notion of model fit that they use. 
In the absence of a more mechanical or causal model, 
the family of latent space models encapsulates the nat-
ural idea that different types of measurements must all 
represent some aspect of an unknown molecular state of 
the cell. The main downside of such models is that the 
latent space typically does not have a physical or chem-
ical interpretation, making it difficult to know what the 
integrated space means in terms of the actual molecular 
state of a cell. In addition, the same set of cells may have 
different latent space representations that model differ-
ent hidden biological states. For example, the same set of 
cells might have a latent space representation of their cell 
cycles, another latent space representation of their cir-
cadian rhythms and yet another latent space representa-
tion of their cell-​type identities. Therefore, the utility and 
variety of the latent space as a model of data integration 
depends on the goals of the biological inference.

Late integration. The last class of methods for data 
integration might be called ‘late integration’21 in the 
sense that this approach does not attempt to relate 
measurements to each other but rather attempts to use 
each data modality to infer a model or result unique to 
that data type and then attempts to integrate the out-
put models or results (Fig. 1d). For example, we might 
infer gene regulatory networks from the transcriptome 
and from the proteome independently, and then apply 
an algorithm to create a consensus network. Another 
example might be estimating cell-​type clusters in each 
data modality independently before applying algorithms 
to reconcile the clusters. The above-​described study 
that used snATAC-​seq to uncover the dynamics of tran-
scription factor activity, which was then matched with 
single-​cell transcriptome data to identify gene regulatory 
circuits involved in kidney development14, can also be 
thought of as a late integration approach.

To summarize, in the best-​case scenario, integrated 
multi-​omics or multimodal analyses can help derive 
a causal model of cellular processes22, for example, by 
using the different data modalities to fit a systems pro-
cess model. Even without a causal model, analyses across 
modalities can generate a stronger biological inference 
than can be achieved with single-​modality analyses. As 
an example, one study23 found that correlation between 
chromatin accessibility and gene expression better 
reflects chromatin conformation than chromatin acces-
sibility information alone. Data from different modalities 
can also provide independent evidence for hypothesized 
processes. For example, motifs in the open cis-​chromatin 
regions uncovered by ATAC-​seq can be used to provide 
additional evidence for transcriptome-​based gene regu-
latory relationships. Approaches that convert between 
different data modalities or construct a common latent 
space can augment mutual information derived from 
each modality and increase the power of subsequent 

inference. For example, clustering analysis on an inte-
grated latent space might yield more stable estimates 
of cell types that more closely follow biological pro-
cesses than analysis with single-​modality inference. For 
exploratory analyses of diseases, integrating multiple 
measurement modalities might also help narrow the 
molecular nature of the malfunctioning processes and 
help determine, for example, whether a disease-​related 
change in gene expression is caused by changes in DNA 
methylation or chromatin accessibility. In conclusion, 
the different approaches of data integration can help the 
resulting inference become more than the sum of its 
parts. Below, we take a more practical data-​centric view 
of what methods one might apply given a particular  
set of data (Fig. 2).

Integrating jointly profiled multi-​omics data
The greatest challenge for single-​cell measurements is 
recovering molecular fractions from limited amounts of 
material24,25. This problem of molecule recovery efficiency 
is exacerbated when attempts are made to recover dif-
ferent molecular compartments such as both DNA and 
RNA. However, simultaneous measurements from the 
same cell alleviates one challenge of multimodal data 
integration — mapping the measurement from one 
modality to another where each modality is measured on 
a different cell. Here, we refer to data with multimodal  
measurements on the same cell as matched data. 
The most popular matched multimodal technique is 
joint snRNA-​seq and snATAC-​seq, such as achieved using 
sci-​CAR26, SNARE-​seq27, paired-​seq28, SHARE-​seq29 
and the 10X Genomics Multiome solution. Techniques 
are also available for joint measurement of transcrip-
tomic and surface protein data, such as achieved using 
CITE-​seq17 and REAP-​seq18. Furthermore, technology 
has been built to measure single-​cell phenotypes along 
with transcriptomic data, providing an important addi-
tional dimension for single-​cell profiling30. The technol-
ogies used for matched multi-​omics have been reviewed 
elsewhere10,31,32.

Naive approaches. A number of methods have been 
developed for the integration of matched multimodal 
data (Table 1). A naive approach is to transform the data 
in such a way that all the features (that is, the measured 
attributes) have homogeneous statistical characteristics. 
A classic approach in organismal systematic biology is 
to scale each feature by its variation across samples33,34  
(in our case, cells). However, this approach results in all 
features being considered equally important in deter-
mining cell variation, which is not biologically reason-
able given their differences in functional importance.  
A related approach is to give each value of a feature a 
probabilistic score, perhaps with different models for 
feature sets, such that the values can have consistent 
probabilistic interpretation. One example of a model 
that uses this approach is BREM-​SC, which assumes a 
multinomial distribution of each gene in each cell type 
for both RNA and protein count matrices obtained using 
CITE-​seq. This type of model enables a probabilistic 
clustering of cell types35. We note that this approach 
is distinct from attempting to statistically translate 

Molecule recovery efficiency
Single-​cell assays capture 
molecules, such as mRNAs  
or transposon-​interrupted 
DNA fragments, and amplify 
them for readout. Different 
protocols recover a given pool 
of molecules with different 
efficiencies; for example, a 
single podocyte might have 
300,000 mRNA molecules  
and an RNA sequencing 
protocol with a 10% recovery 
efficiency would recover 
~30,000 of these.

Joint snRNA-​seq and 
snATAC-​seq
Single-​cell RNA sequencing 
(scRNA-​seq) attempts to 
recover RNA from the whole 
cell, whereas single-​nucleus 
RNA sequencing (snRNA-​seq) 
only isolates the nuclear 
fraction of the RNA; the two 
transcriptomes are related  
but different. Multi-​omics 
methods involving assay  
for transposase-​accessible 
chromatin using sequencing 
(ATAC-​seq) and RNA-​seq 
typically isolate the nucleus 
first, resulting in snRNA-​seq 
and snATAC-​seq.
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measurements of one modality onto another. These 
naive approaches are simple but ignore the biological 
context of the different modalities and instead attempt to 
harmonize the statistical characteristics of the different 
features, limiting their utility.

Latent space approaches. A more model-​based the-
oretical approach is to consider each measurement, 
regardless of its modality, as an ‘aspect’ (or a ‘view’) of 
an underlying relationship between the cells. That is, we 
would assume the existence of a common latent space. 
One tool that uses this approach to dissect heterogeneity 
in joint transcriptome and epigenome profiling data is 
called single-​cell aggregation and integration (scAI)36. 
To solve the problem presented by the fact that typical 
epigenomic information such as that obtained through 
scATAC-​seq is often sparse with a high false-​negative 
rate, scAI first replaces the value of a cell with a similarly 
weighted average of a random selection of the values of 
its neighbour to ‘smooth over’ sparse values. It then 
infers an underlying common latent space by assuming 
that the data matrix of the transcriptome and the epige-
nome can be approximated by a weighted linear function 
of the shared underlying space. An additional constraint 
(known as a sparseness constraint) is introduced to make 
the underlying space as simple as possible, along with 
another constraint that tries to optimize the preserva-
tion of original cell-​to-​cell relatedness in the underlying 
common space. Application of this method to joint tran-
scriptome and epigenome data from the kidney enabled 

the identification of two subpopulations with distinct 
open chromatin profiles but similar transcriptomes36, 
indicating the need to consider both modalities in order 
to precisely characterize cell identities.

Latent space approaches can be thought of as inte-
grating at the level of features (that is, early integration). 
Multi-​omics factor analysis (MOFA) and its updated 
version, MOFA+, implement group factor analysis to 
identify shared variation across multiple modalities37,38. 
The basic models of MOFA and MOFA+ are similar to 
that of scAI; that is, the observed data in each modality 
is considered a linear weighted function of an underly-
ing common latent space. MOFA+ adds multiple under-
lying latent spaces to account for group effects such as 
different experimental batches. The main difference 
with scAI is that MOFA and MOFA+ explicitly attach  
a probability model such that each cell’s feature value is a 
random variable that is a function of the common latent 
space. Thus, while the basic mathematical structure of 
the model is similar to that of scAI, the way MOFA asso-
ciates the model to the data is different. Although not 
tailored for single-​cell data specifically, the utility of this 
tool to study a dataset with joint single-​cell methylation 
and transcriptome profiles has been demonstrated37.

Another tool, totalVI39, also has similar structure to 
that of scAI and MOFA in that observed transcriptome  
and protein measurements (as achieved using CITE-​seq17)  
are considered functions of a common latent space. 
TotalVI relates the observed data and modelled data with 
a machine learning model (deep neural network) that 
implements an encoder–decoder scheme (Box 1). The 
middle layer of this encoder–decoder neural network 
can be interpreted as a common latent space and used 
as the integrated variable set to conduct downstream 
analyses. A potential advantage of totalVI over scAI and 
MOFA methods is that the neural network architecture 
allows more complex (non-​linear) relationships between 
the common latent space and measured features.

Late integration approaches. The above methods either 
explicitly or implicitly aim to infer a common rep-
resentation space from multi-​omics data. An alternative 
approach involves the integration of data at the level of 
inferred models (that is, late integration). One such 
method40, called weighted nearest neighbour analysis in 
Seurat V4, synthesizes a combined measure of cell-​to-​cell 
affinity from modality-​specific affinity models, for exam-
ple, cell-​to-​cell relationships calculated using RNA data 
and protein data. We first note that data in each modality 
can be used to compute neighbouring relationships of a 
cell; that is, we can have a neighbourhood by RNA data 
and a neighbourhood by protein data. Weighted nearest 
neighbour analysis aims to measure the informative-
ness of each kind of neighbourhood by assessing how 
well the cells in each type of neighbourhood predict the 
RNA or protein value of a given cell. These computations 
are used to synthesize a weighted average of cell-​to-​cell 
affinities from each modality. Another method, called 
similarity network fusion, aims to synthesize affinity 
relationships based on a more principled computa-
tion idea called ‘message passing’41. In this approach, 
a neighbourhood relationship is first calculated for 

Table 2 Table 2

Table 2

Single-cell multi-omics integration

Analysis with matched data Unmatched data

Analysis with matched clusters

Analysis with converted features Analysis with aligning common space

Profiling techniqueJoint 
multimodal 
profiling from 
the same cell

Separate 
multimodal 
profiling from 
different cells

Yes

NoYes

Yes or no

Feature conversion
available?

Manual annotation
available?

Table 1

Fig. 2 | Considerations for choosing an integration method for single-cell multi-omics 
analysis. Various data integration methods can be used depending on the nature of the 
data and whether they are matched (that is, different modalities profiled from the same 
cell) or unmatched (that is, different modalities profiled from different cells). For unmatched 
data, analyses can be performed with matched clusters if manual annotations of cell types 
are available. For example, if we are only interested in the cell-​type-​level relationship 
between open chromatin and DNA methylation, we can perform clustering and cell-​type 
annotation for each modality and integrate at the level of cell type. If manual annotations 
are not available or a higher resolution of integration is needed, two different strategies are 
available depending on whether feature conversion is possible. For data with a common 
feature set or converted features (for example, open chromatin to gene activity), tools 
developed for matching with converted features can be used. For data without common 
features or feature conversion, integration by aligning common spaces can be applied.
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each object (that is, a cell) from the similarity (or 
affinity) matrix of each modality. Subsequently, the  
similarity matrices of each modality are ‘fused’ together 
by passing the relationship information from the set of 
neighbouring objects of one matrix to the other matrix, 
back-​and-​forth iteratively until they converge. This basic 
approach was implemented in CiteFuse42 as a method 
to integrate affinity relationships from RNA and surface 
protein from CITE-​seq.

Integrating independent multimodal data
With current technologies, a more common prob-
lem than the integration of matched datasets is the 
integration of two or more independently collected 
datasets (that is, unmatched data), with different modal-
ities. The emergence of comprehensive, single-​modality, 
single-​cell datasets across whole organisms43–45 has led 
to an abundance of highly accessible data of this type. 
In general, experimental approaches for joint meas-
urements of certain modalities are still under develop-
ment or may be impossible. For example, approaches 
to simultaneously quantify single-​cell transcriptome 
and whole-​proteome data are extremely challenging as 
single-​cell proteomics techniques are rapidly advanc-
ing but still lack sensitivity46. Single-​cell lipidomics has 
been more successful than proteomics at quantitatively 
identifying molecular species47 but we are not aware of 
any attempts at multimodal measurement of lipidom-
ics data. The key problem for unmatched data is that 
measurements from each modality are unlikely to have 
cell-​to-​cell correspondence. That is, in measurements 
from one set of cells using one modality, say proteins, 

and another set of cells for another modality, say the 
transcriptome, it is highly unlikely that there will be 
cells in each set that correspond exactly to the same cell 
state for both modalities. Thus, almost by definition, we 
cannot integrate information at the level of individual 
cells when measurements are not matched. Current inte-
gration approaches therefore attempt to match groups of 
cells, either at the level of distinct cell types or at the level 
of local ensembles (neighbouring cells). Alternatively, 
some methods try to statistically map one feature space 
to another. Here, we classify these methods into three 
main categories: those that match by annotated cell 
groups, those that match by a shared feature set and 
those that match without a common feature set (Table 2).

Matching by annotated cell groups. When different 
measurements are made on different sets of data, one 
coarse-​grained approach to integrate those measure-
ments is to match groups of cells (for example, clusters) 
between the modalities. The clusters in each modality 
can be associated manually if the clusters correspond to 
known cell types, which might have been inferred from 
expert knowledge (for example, through marker gene 
expression). If cluster label information is not availa-
ble from established annotations, other features that 
are biologically informative can be used, such as the 
proximity of open chromatin to expressed genes, aver-
aged over the ensemble of the cluster to match clusters 
from each modality. One study, for example, integrated 
scRNA and scATAC data48 by linking open chromatin 
peaks of scATAC-​seq cell clusters with the expression of 
scRNA-​seq cell clusters through their proximity in the 

Table 1 | Methods for matched data analysis

Tool Data 
type

Model Additional notes Documentation Ref.

BREM-​SC T + P Early 
integration, 
probabilistic 
modelling

This method models the observed data by 
multinomial distributions and assumes data 
from both modalities to be generated in a 
cluster-​specific manner

https://github.com/
tarot0410/BREMSC

35

scAI T + C Early 
integration, 
latent space 
modelling

scAI iteratively updates a regularized matrix 
factorization model to obtain an optimal common 
cell-​loading matrix across two modalities

https://github.com/
sqjin/scAI

36

MOFA+ T + C Early 
integration, 
latent space 
modelling

MOFA and MOFA+ were built on the framework 
of group factor analysis but extend the model 
to enable the integration of different data types 
(count versus binary)

https://github.com/
bioFAM/MOFA2

38

TotalVI T + P Early 
integration, 
latent space 
modelling

This method uses a variational autoencoder 
framework built on scVI. In this method, the protein 
measurements are modelled with a negative 
binomial mixture distribution to account for 
background reads

https://github.com/
YosefLab/scvi-​tools

39

CiteFuse T + P Late 
integration, 
latent space 
modelling

The similarity measurement for protein data 
is based on a proportionality coefficient and 
the similarity measurement for RNA data is 
constructed with the Pearson correlation

https://github.com/
SydneyBioX/CiteFuse

42

Seurat 4.0 T + P Late 
integration, 
latent space 
modelling

Computes a weighted average cell affinity matrix 
from modality-​specific affinity matrices. The 
weights are computed to reflect the predictive 
information within a cell’s local neighbourhood 
defined within each modality

https://github.com/
satijalab/seurat

40

BREM-​SC, Bayesian random effects mixture model-​single cell; C, chromatin accessibility; MOFA, multi-​omics factor analysis;  
P, proteome; scAI, single-​cell aggregation and integration; scVI, single-​cell variational inference; T, transcriptome.

Feature space
In machine learning, measured 
variables are often called 
features and the set of features 
comprise a feature space.

www.nature.com/nrneph
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genome, from which they inferred enhancer–promoter 
pairs. These enhancer–promoter pairs were consistent 
with prior knowledge of regulatory networks, sup-
porting the utility of this method. Another approach, 
MAESTRO49, incorporates additional information from 
chromatin immunoprecipitation followed by sequenc-
ing (ChIP–seq) databases to help define transcriptional 
regulators and match clusters based on scRNA and  
scATAC data.

Matching at the cell-​group level is also common 
practice in analyses of spatial transcriptome data. Most 
current spatial transcriptomics technologies either 
lack resolution or transcriptome complexity (reviewed 
elsewhere50); however, integrating scRNA-​seq with 
spatial data can help overcome these two limitations. 
For example, training of a machine learning clas-
sifier, Support Vector Machine, on highly variable 
genes from annotated scRNA-​seq clusters enabled the 
classifier to identify and map major cell types from 
sequential fluorescence in situ hybridization (seqFISH) 

data through which only 125 genes had been profiled51. 
For spatial transcriptomics data with low cellular 
resolution — such as that obtained using 10X Visium 
and Slide-​seq52 — scRNA-​seq data can be used to decon-
volute the spatially averaged low-​resolution readout and 
increase resolution by estimating the frequencies of each 
cell type53.

Matching with shared feature sets. In rare cases, meas-
urement modalities might be different but their com-
mon molecular basis can be used to match the features. 
For example, STvEA54 matches CITE-​seq data with 
multiplexed immunohistochemistry or flow cytometry 
data using measurements of protein abundance as the 
common factor. Matching is achieved through mutual 
nearest neighbour (MNN) correction55 on the two data 
matrices, enabling the automated annotation of mul-
tiplexed immunohistochemistry (or flow cytometry) 
data with labels from CITE-​seq data. Given two sets 
of objects and a notion of distance across the datasets, 

Table 2 | Methods for unmatched data analysis

Strategy Tool Data 
type

Feature 
matching

Algorithm Additional notes Documentation Ref.

Group 
matching

Stereoscope T + ST R Deconvolution This method assumes negative binomial 
distributions of genes and tolerates differential 
gene capture efficiencies between two 
technologies

https://github.com/
almaan/stereoscope

53

MAESTRO T + C R CCA + MNN This method implements ChIP–seq data-​based TF 
enrichment score calculators to define core TFs in 
each cell-​type cluster

https://github.com/
liulab-​dfci/MAESTRO

49

Comon 
features

STvEA MI + ET R MNN This method also provides a framework to transfer 
cell-​type annotations from one modality to another

https://github.com/
CamaraLab/STvEA

54

Clonealign T + D R Variational 
Bayes

This method assumes correlation between DNA 
copy number and gene expression within the 
same region

https://github.com/
kieranrcampbell/
clonealign

56

Seurat 3.0 T + C R CCA + SNN This method identifies anchor cells between 
datasets based on SNN across modalities; these 
anchor cells serve as a bridge for matching

https://github.com/
satijalab/seurat

57

LIGER T + M,  
T + C

R iNMF The relative contribution of dataset-​specific 
factors and shared factors is determined by a 
hyperparameter λ, which can be used to fine-​tune 
the integration results

https://github.com/
welch-​lab/liger

58

Aligning 
spaces

MAGAN MI + T R GAN This method identifies cell-​to-​cell correspondence 
by adding a loss function defined by similarity of 
cell matching; such loss function requires at least 
some shared features between two datasets

https://github.com/
KrishnaswamyLab/
MAGAN

60

MATCHER T + C NR Manifold 
alignment

This method assumes 1D structure (pseudotime) 
with a pre-​specified direction

https://github.com/
jw156605/MATCHER

61

MMD-​MA T + M NR MMD In addition to the MMD loss, the loss function 
also has a distortion loss and a penalty to ensure 
the dimensionality and orthogonality of each 
projection

https://bitbucket.org/ 
noblelab/2019_
mmd_wabi/src/
master/

62

UnionCom T + M NR GUMA The algorithm generalizes the GUMA method 
to achieve soft matching between datasets, 
enabling matching with different numbers of cells

https://github.
com/caokai1073/
UnionCom

63

SCOT T + C NR GWOT A late integration method in which a similarity 
matrix is constructed by each modality separately, 
after which probabilistic transportation between 
datasets is achieved by GWOT

https://github.com/
rsinghlab/SCOT

64

C, chromatin accessibility; CCA, canonical correlation analysis; ChIP–seq, chromatin immunoprecipitation followed by sequencing; D, DNA; ET, simultaneous 
epitope and transcriptome; GAN, generative adversarial networks; GUMA, generalized unsupervised manifold alignment; GWOT, Gromov–Wasserstein optimal 
transport; iNMF, integrative non-​negative matrix factorization; M, methylome; MI, multiplexed immunohistochemistry; MMD, maximum mean discrepancy; MNN, 
mutual nearest neighbours; NR, not required; R, required; SNN, shared nearest neighbours; ST, spatial transcriptome; T, transcriptome; TF, transcription factor.

Sequential fluorescence 
in situ hybridization
(seqFISH). A technique  
that measures mRNA  
quantity through sequential 
fluorescent probes that have 
combinatorially encoded 
information for each targeted 
mRNA. For example, a 
sequence signal, probe A then 
B, might encode gene X, 
whereas the sequence probe A 
then C might encode gene Y.
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MNN identifies pairs of objects in the two sets that 
are considered each other’s nearest neighbour. A clas-
sic application of MNN is in identifying homologues  
among gene paralogues; variations of the MNN principle 
have been used widely in data integration.

In the absence of a common molecular basis, meas-
urements of one modality may be connected to features 
of another by some (biologically motivated) statistical 
model to enable joint analysis. For example, clonealign56 
assumes that an increased DNA copy number (inferred 
from single-​cell DNA sequencing data) in cancer cells 
will result in increased gene expression within the cor-
responding region. Many scRNA–scATAC integration 
methods synthetically construct a ‘gene activity matrix’ 
from ATAC data, which is treated as a gene expres-
sion feature set. Multiple models have been proposed 
to infer gene activities from chromatin accessibility 
data. Seurat V3 (ref.57) aggregates all ATAC reads from 
–2 kb of the transcription start site (TSS) through-
out the whole gene body to predict expression levels. 
MAESTRO49 assigns weights to each peak with an 
exponential decay based on the distance to the TSS. 
The Cicero model20 is more complex and considers 
read depth and distal elements that are co-​accessible 
with the TSS. Mapping features of one modality onto 
another often creates systematic differences that are 
similar to normalization problems and batch effects. 
Therefore, good calibration after feature conversion is 
essential for matching to be successful. Calibration can 
begin before integration: for example, Seurat V3 and 
STvEA conduct normalization of both datasets before 
integration, whereas this step is usually skipped by other 
models. Seurat V3 and MAESTRO pipelines implement 
canonical correlation analysis to align the two datasets, 
which are then mapped to the same gene expression 
feature space; they then apply MNN correction55 for  
additional alignment.

Integration of unmatched data by latent models. Similar 
to matched data cases, data from each modality can 
be modelled as maps from an abstract set of common 
factors (latent factors). LIGER58 uses an integrative non-​
negative matrix factorization59 approach to jointly factor-
ize multiple cell-​by-​feature matrices into cell-​by-​factor 
matrices and factor-​by-​gene matrices using a set of 
common factors for all matrices and another set of fac-
tors specific to each matrix. Factors here refer to hypo-
thetical underlying (latent) features that can be thought 
as abstract cell states that determine observed values. 
Multiple modalities can be integrated through statistical 
modelling of features; for example, by using a quantita-
tive measure of gene accessibility from snATAC-​seq to 
estimate gene activity for integration with scRNA-​seq. 
The factor loadings of each gene are usually interpreted 
as ‘metagenes’ and the magnitude of modality-​specific 
factors is constrained and regularized (Box 1). The fac-
tor loadings of each cell are used for clustering and 
cell matching. Matrix factorization methods assume 
that observed data are weighted linear functions of the 
latent decompositions but, similar to the above discus-
sion of totalVI39, more-​complex relationships can be 
modelled with neural networks. MAGAN60 implements 

a type of neural network called dual generative adver-
sarial network (dual GAN) that uses a new architec-
ture to map two datasets from different modalities  
reciprocally.

Obtaining a shared feature set by mapping between 
modalities can be challenging or even impractical when 
the measurements from each cell are vastly distinct. 
Rather than operating on a discrete set of observed 
data points, another approach is to consider modelling  
the entire ‘space’ of data for each modality and map the 
spaces to each other. Manifold (Box 1) alignment and 
related methods assume that individual cells occupy 
some geometric subset of the feature space of a given 
modality. These geometric subsets have been called a 
‘manifold’ in the literature (with some abuse of the 
mathematical term). These manifolds can be thought 
of as smooth curved surfaces that characterize a bio-
logically feasible set of values for a given collection of 
cells. Manifold alignment methods assume that a shared 
latent structure (a manifold) underlies each dataset 
and tries to learn a shared manifold among datasets 
to build correspondence between them; the approach 
is similar to linear latent variable models but with  
more generality.

Tools that implement manifold alignment include 
MATCHER61, MMD-​MA62 and UnionCom63. These 
methods start with dimension reduction of the datasets. 
As an important first step, dimension reduction methods 
are chosen to be consistent with the model assumption 
and suitable to the data structure. MATCHER starts 
with the assumption that a one-​dimensional structure 
exists along which all cells lie (this one-​dimension can 
be interpreted as pseudotime). MATCHER then fits a 
stochastic model to infer a one-​dimensional manifold 
structure (that is, pseudotime) for each data modality. 
Subsequently, a function termed monotonic warping 
is trained to minimize the loss function (Box 1) match-
ing two or more one-​dimensional manifolds with a 
pre-​specified manifold orientation. Monotonic warp-
ing refers to a function that associates two variables 
to each other that are strictly increasing or decreasing 
(that is, order preserving). Schematically, MMD-​MA 
maps geometric relationships within each modality 
feature space to a common space in a way that mini-
mizes geometric distortions between each modality 
space while maintaining the intraspace configuration. 
UnionCom embeds each modality into a distance matrix 
that encapsulates a low-​dimensional manifold for each 
modality. A well-​defined pairwise distance matrix is 
sufficient to represent the complete geometric config-
uration of points. Thus, two matrices in UnionCom 
represent the estimated geometric relationships of the 
cells in each measurement modality. By optimizing a 
notion of difference between the two geometric con-
figurations, the configurations of two modalities are 
matched and probabilistic cell correspondence between 
the two datasets are computed. Somewhat distinct from 
manifold alignment, SCOT64 uses the notion of optimal 
transport, which tries to define a relationship between 
two sets of objects, each with a number of classes (for 
example, cell types) and different frequency of objects 
in each class. The computed relationship considers both 

Read depth
A quantity that measures  
the number of times that 
sequencing reads cover a given 
genomic region. The region of 
interest may be a base pair or 
an entire transcribed region.

Canonical correlation 
analysis
A multivariate statistical 
technique that computes the 
correlation between two sets  
of variables, say X and Y. 
Canonical correlation analysis 
finds the linear combination of 
X and the linear combination  
of Y that maximizes correlation.

Non-​negative matrix 
factorization
A group of algorithms that 
decompose one matrix into  
a product of two (or more) 
matrices, such that the 
elements in each matrix  
are non-​negative. Typically, 
each matrix has a model 
interpretation; for example,  
a data matrix factorizes the 
matrix into one representing 
latent space features and 
another representing latent 
space features to cells.

Metagenes
A metagene is some 
(mathematical) function of a 
group of genes (for example, 
linear combination), often 
relating some shared properties. 
For example, methods like 
non-​negative matrix 
factorization compute matrices 
as the product between a 
gene-​by-​metagene matrix and  
a metagene-​by-​cell matrix.

Dimension reduction
A data transformation  
method that reduces the 
number of dimensions in  
the original feature space  
to a lower-​dimensional space 
(usually much lower than the 
original one) while certain 
properties (for example, the 
distance measures between 
observations) of the original 
data are preserved.

Pseudotime
In contrast to real time, 
pseudotime represents 
computationally inferred 
temporal stages of a collection 
of cells.
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the frequency of objects in each class and a measure of 
distance between the objects.

Matching different modalities by aggregation is a 
natural idea but tends to lose individual cell resolution. 
Some approaches attempt to recover individual cell res-
olution through initial aggregated matching and then 
refinement, but the results from these approaches can 
be highly dependent on initial conditions. Matching by 
applying statistical models between the features of the 
different modalities can provide cell-​level resolution 
but this approach is highly dependent on the accuracy 
of the statistical models. Although a clear relationship 
exists between chromatin states and gene expression, the 
exact relationship, especially with respect to temporal 
dynamics, is unclear. Matching by latent space or man-
ifold alignment models are somewhat more principled 
approaches than aggregation and refinement, but the 
available models are complex and their interpretation 
in biological terms is often unclear. In summary, the 
available approaches have different strengths and weak-
nesses and their utility is likely to be highly data and 
problem dependent.

Visualization of multi-​omics data
Computational visualization tools or interactive web-
sites that allow user-​friendly searches and the display 
of features notably promote data sharing and reuse. 
Two large categories of data visualization exist in the 
context of single-​cell biology. One might be called 
‘unbiased’ visualization and includes various dimension 
reduction approaches that attempt to display all data 
points. The other might be called ‘knowledge-​driven’ 
visualization, whereby certain curated aspects of the 
data (for example, a focal subset of cells) are displayed. 
Although multiple tools have been developed to visual-
ize scRNA-​seq data, tools for the explicit visualization of 
single-​cell multi-​omics data are scarce. Below, we provide 
a brief overview of current methods and discuss future 
directions for multimodal single-​cell visualization.

Unbiased visualization. Dimension reduction and 
unbiased visualization have been crucial in the inter-
pretation of complex single-​cell data. The diverse cell 
types and states within a single-​cell dataset mean that 
visualizing cells as a point in a two-​dimensional or 
three-​dimensional image is useful for evaluating data 
qualities, cell identities, developmental trajectories and 
batch effects65. Various visualization methods have been 
implemented based on dimension reduction approaches, 
including tSNE, UMAP66, PHATE67 and force-​directed 
graphs68. These methods extend from classic linear 
methods such as principal component analysis, which is 
based on projecting data points onto (orthogonal) direc-
tions of maximum variation, and embedding methods 
such as multidimensional scaling (MDS). MDS com-
putes one set of distance relationships in the original 
high dimension after which points are placed in lower 
dimensions such that the distance relationships in the 
lower dimensions are as similar to those of the original 
dimensions as possible. Variations of MDS involve dif-
ferent ways to define distances or measure the distor-
tions between high-​dimensional and low-​dimensional 

distance relationships. The main problem faced by 
dimension reduction and visualization methods is that 
the configuration of points in a high-​dimension state 
cannot be represented in lower dimensions without 
error and the methods therefore have to trade off the 
kinds of distortions that they allow. Typically, it is hard 
to uniformly spread out the distortions from smaller dis-
tances (for example, within clusters) to those from larger 
distances (for example, between clusters). The type of 
trade-​off is determined by the approaches used to cal-
culate distances and measure high-​to-​low distortions; 
typical options trade off accuracy at large distances for 
accuracy at smaller distances.

Methods such as tSNE, UMAP and PHATE add 
another twist to the dimension reduction approach by 
allowing inhomogeneous notions of distance or simi-
larity. That is, a distance from point X to point Y might 
be different from that of point Y to point X. One inter-
pretation of this approach is that the inhomogeneity in 
distances is related to curvature or (diffusion) veloc-
ity; thus, the distance of X to Y might be analogized to 
going uphill versus Y to X going downhill or a particular 
region might have high curvature and is therefore hard 
to traverse. Modern methods of visualization also imple-
ment non-​linear notions of distance (or similarity) such 
that certain distances are emphasized, whereas others 
are de-​emphasized, which often allows the resulting 
embeddings to highlight cluster relationships. These 
methods try to control the arbitrary freedom allowed 
by such flexibility by imposing user-​defined constraints 
(for example, ‘perplexity’ in tSNE; Box 1). We caution 
that the high flexibility of these methods can complicate 
the interpretation of data. The visualizations can also be 
unstable, either because the algorithms start from ran-
dom initial configurations or due to the sensitivity to the 
addition and subtraction of points. In-​depth discussion 
of tools for the visualization of single-​cell data can be 
found elsewhere69.

Unbiased visualization approaches naturally 
extend to multi-​omics single-​cell data as long as the 
above-​described integration methods produce rep-
resentation in a common space. Any of the available 
dimension reduction methods can be used to visual-
ize integrated relationships within a common latent 
space, for instance, a shared gene expression space (by 
gene activity modelling) or a common layer in a neural 
net. For example, the multi-​omics visualization arm of 
scAI36, called VscAI, enables the visualization of cells, 
genes and (accessibility) loci by an embedding that 
reflects the low-​dimensional latent space. However, 
the nature of integrative analyses suggests the need for 
more complex multiple views of the data. For example, 
we might want to see single cells laid out in the common 
latent space and then also see their configuration in each 
of the measurement modalities, in particular, with cell 
correspondences in each space. Although it is possible 
to switch views (as described elsewhere6,44), currently 
available methods do not easily show correspondence 
between layers. It would be desirable to have visualiza-
tion systems similar to geographical information sys-
tems such as those used in landscape ecology70, which 
have layers of multimodal maps.

Principal component 
analysis
A common dimension 
reduction method that aims to 
project the original data to a 
fixed smaller dimension while 
minimizing the squared error 
during data reduction. This 
approach can be viewed as 
maximizing the variance in the 
projected data.

Embedding
In mathematics, embedding is 
a map from one set X to 
another set Y, where some 
characteristic of X is preserved. 
In single-​cell studies, the term 
embedding has been used for 
methods that ‘place’ cells in a 
new feature space, possibly of 
a lower dimension, such that 
notions of cell-​to-​cell distances 
are approximately preserved.
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Knowledge-​driven visualization. Single-​cell data are 
used by researchers to derive additional biological 
inferences — a process that is often called downstream 
analysis. These downstream analyses result in the pro-
duction of additional visual objects. Common examples 
of these visual objects include violin plots to visualize 
cell-​type marker genes, di-​graphs to visualize cellular 
interactions or even simple annotation overlay to vis-
ualize a focal subset of cells. Other visual devices that 
focus on particular knowledge-​driven assumptions 
include displays of motif enrichment along with the 
expression of corresponding transcription factors14, vis-
ualization of sequence reads along genomic tracks71 and 
other associated annotation data organized by genomic 
coordinates71,72. One important approach to incorporate 
existing knowledge for single-​cell data is to associate 
spatiotemporal information with single-​cell visualiza-
tion. Temporal trajectories have been visualized using 
many different pseudotime methods; for example, the 
RNA velocity method15 displays estimated displacement 
vectors to extrapolate the ‘flow’ of cell differentiation 
states. Approaches for the visualization of single-​cell 

data in the context of anatomical ontology (for exam-
ple, KidneyCellExplorer6) or within detailed 3D mod-
els (for example, the NIH HuBMAP portal73) are under 
development.

Future directions for data visualization. Additional 
visualization tools and frameworks are needed to fully 
appreciate the complexity of multimodal data (Fig. 3). 
Visualization tools with greater flexibility to enable 
the display of multiple and coordinated views that link 
objects in various modalities will aid visual explorations 
of multimodal relationships. However, even multiple 
layers of data visualization will be insufficient to fully 
explore the biological structure of multimodal data if the 
visualizations are static. Complex data are best explored 
with interactive systems that enable dynamic modifica-
tions of views, such as the ability to re-​display subsets of 
data or dynamically switch between different modalities. 
One critical consideration is the computational speed 
required for such interactive visualizations and analyses, 
especially for very large datasets (for example, those with 
data for 106 cells4,5). As datasets scale to extremely large 

a  Multi-layer view

c  Multi-scale view d  Visualization with prior knowledge e  On-the-fly view generation

b  Versatile visualization

Modality 1

Modality 2

Consensus

Spatial
location Data matrix

Violin plot

Cell-type lineage

Embedding plot

Feature plot

Pseudotime

Fig. 3 | Desired properties and functionalities of visualization tools for 
single-cell multi-omics. Visualization of multi-​omics data requires 
additional functionalities given the complex data structure; for example, 
the ability to switch the view between different modalities. Some other 
desirable features include multiple layers of data visualization based on data 
obtained for different modalities with mapping between each layer (ideally, 
the mapping between each observation and their spatial location can also 

be displayed as another layer of information) (part a); versatile and dynamic 
visualizations that incorporate downstream analyses or prior knowledge 
(part b); multi-​scale views with multiple resolutions to assist the dissection 
of very large datasets (part c); integration of prior knowledge such as 
ontology and anatomy with multi-​omics data to help anchor biological 
knowledge to the data (part d); and tools that enable on-​the-​fly or dynamic 
visualization of data to enable more-​flexible data visualization (part e).
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sizes, issues of where to store and compute the views (for 
example, in the cloud or on a client computer) become 
non-​trivial.

Viscello44, Cerebro74, VscAI36 and Giotto75 are some 
of the tools that currently allow some degree of inter-
active multimodal single-​cell data visualization. Some 
consortia, including ReBuilding a Kidney (RBK) and 
the GenitoUrinary Development Molecular Anatomy 
Project (GUDMAP), integrate interactive single-​cell 
visualizers in their data archive. However, these tools 
are not fully interactive in the sense that they cannot 
recompute the visualization to an arbitrary choice of 
views or subsets of data.

Challenges for single-​cell multimodal data 
integration
The above discussion of data integration approaches 
for single-​cell multimodal data touches only the surface 
of this very active area of ongoing research. All avail-
able approaches have common challenges that must 
be considered. These challenges can originate from 
the processes of data collection, data conversion or 
data interpretation. Here, we discuss some of the most 
prominent challenges to single-​cell, multimodal data 
integration.

Accounting for data characteristics. It is well acknowl-
edged that single-​cell data are noisy. This noise arises 
from biological and technical variation. Common 
biological variation includes the stochastic bursting 
of genes76, variation arising from circadian rhythm77 
and cell cycling78, and variation arising from the local 
cell environment. The contribution of technical var-
iations is debated but may include uneven dropouts 
and coverage25,79, transcript contamination (from 
ambient RNA)80 and multiplets81. In general, single-​cell 
assays, especially high-​throughput assays, tend to be 
lossy since the technologies trade off sensitivity (that 
is, the efficient capture of the molecules in a cell) for 
throughput, resulting in sparse datasets. This spar-
sity is a huge challenge and is typically approached by 
‘borrowing’ local information from nearby cells, which 
can introduce additional biases. Multi-​omics approaches 
have the potential to resolve some confounding factors, 
sparsity or noise in a single modality by ‘borrowing’ 
information in the other modality, but this integration 
does not always improve the prediction power achieved 
by a single modality82. Noise across multiple layers can be 
amplified, leading to a decrease in the signal strength83. 
An important problem in single-​cell analysis is that com-
monly used noise models typically use off-​the-​shelf par-
ametric models, such as Poisson zero inflation models 
and negative binomial models84,85, whereas, in practice, 
single-​cell noise does not seem to be well modelled by 
these parametric models and systematic control exper-
iments to measure the characteristics of the noise have 
been rare79,86.

Although models have been built to distinguish 
biological and technical variation in scRNA-​seq data87, 
models to account for heterogenous noise across multi-
ple modalities still need to be developed. In some cases, 
the problem of heterogeneous noise is best handled by 

‘early integration’, whereby the input datasets themselves 
are operated on to make a single compatible matrix (for 
example, by applying weights and concatenating the 
datasets). In other cases, the problem is best approached 
by ‘intermediate integration’ (for example, using the 
latent space methods approach to map the input data to 
theoretical common space features). In still other cases, 
‘late integration’ might be the best approach, whereby 
each modality is used to infer a model, such as a gene 
regulatory network, and then the inferred models are 
combined appropriately (for example, using CiteFuse41). 
Each of these approaches have advantages and disadvan-
tages depending on the modalities being integrated and 
other conditions of measurement (for example, batch 
effects). Earlier integration might help increase the 
power of ultimate downstream analysis (for example, 
the identification of cell clusters) both by increasing the 
size of the dataset and by bringing together (possibly) 
complementary information. Late integration can help 
the application of modality-​specific models and methods 
to handle heterogeneous noise and enable the individual 
inferences (for example, clusters from each modality) to 
be combined to obtain a more robust inference.

Data types and cell composition compatibility. Although 
desirable to integrate information from all relevant 
sources, datasets that are to be integrated can be vastly 
distinct. At a simple level, gene expression profiles in 
scRNA-​seq data are continuous variables, whereas chro-
matin accessibility measurements are usually binarized 
to indicator variables88 (also known as dummy vari-
ables). This integration of distinct datasets requires a 
consistent way to match metric variables with nominal 
variables, which can have both technical and conceptual 
challenges89.

At a more complex level, traits such as cell morphol-
ogy, while having a metric representation, are difficult 
to statistically characterize in a meaningful manner.  
The emergence of machine learning methods has led  
to the development of approaches to integrate morphol-
ogy and expression data. Fascinating insights from these 
studies suggest that cell morphology might predict gene 
expression90, but the functional connections of such 
relationships are still unclear. Another more common 
but important challenge is that subtypes of cells that are 
recovered and measured with high-​throughput single-​cell 
methods can be very different for different measurement 
modalities. For example, immune cell populations are 
usually over-​represented in scRNA-​seq datasets, prob-
ably as a result of recovery bias, whereas snRNA-​seq 
methodologies demonstrate bias in their recovery of dif-
ferent subpopulations91. Such differences in cell-​subtype 
distribution can complicate data matching, especially for 
nearest neighbour-​based methods.

Computing millions of data points. With the develop-
ment of combinatorial indexing technologies92 and 
sample multiplexing strategies93, datasets are now availa-
ble at a 106 scale4,5. Efficient computing over such big data 
matrices requires different strategies to those used for 
smaller datasets. We note that just to compute pairwise 
relationships for a dataset of size 106, ~1012 computations 

Dropouts
In single-​cell biology, dropouts 
are usually the transcripts  
that were present in the cell 
but were not captured during 
sequencing.

Ambient RNA
In droplet-​based single-​cell 
RNA sequencing approaches, 
the measured mRNA molecules 
can be contaminated by 
mRNAs from other cells 
present in the suspension, for 
example, owing to cell rupture. 
These contaminating mRNAs 
are termed ambient RNA.

Multiplets
During high-​throughput 
single-​cell (or single-​nucleus) 
isolation in droplets or similar 
vessels, two or more cells might 
be captured together creating 
a mixture of molecules. 
Computational methods have 
been developed to detect and 
remove such unwanted 
observations from the dataset.
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need to be considered. This scale of computing is pro-
hibitive, resulting in the use of less intensive heuristic 
methods. In fact, even just laying out a million points for 
data visualization becomes a heavy computational bur-
den and prevents researchers from exploring different 
views due to the wait time involved. Future integrative 
analyses of single-​cell data will require concerted efforts 
in algorithm development with incorporation of novel 
stochastic indexing strategies, streaming algorithms 
and careful heuristics, along with the development of 
carefully tuned high-​performance codes (Box 1). Some 
areas of computational biology such as phylogenet-
ics and protein folding have long been acutely limited 
by computational speed and advanced algorithmics 
have been an inherent part of those fields. We suspect 
single-​cell biology will soon demand similar levels of 
algorithm sophistication and high-​performance software 
engineering.

Modality mapping. As discussed earlier, the integration 
of unmatched measurements is often achieved by map-
ping the values of one modality to those of another — a 
key example is the conversion of chromatin states to gene 
expression values. However, such conversions assume 
an over-​simplified model between different modalities, 
mostly due to a lack of knowledge of whole-​genome gene 
regulatory logic. As previously reported29, the temporal 
dynamics of the open chromatin states of a cell are not 
at the same phase as its corresponding RNA expression; 
rather, gene expression lags behind the opening of its 
proximal chromatin. Thus, accurate mapping between 
the modalities requires both a precise knowledge of the 
mechanisms connecting the measured molecules and 
the temporal dynamics of the mechanisms. Similar 
considerations would apply when mapping between 
the transcriptome and the proteome or, a more compli-
cated scenario, the connection between molecular and 
morphological states.

Interpretability and validation. Most data integra-
tion methods avoid detailed causal modelling. At the 
extreme end are purely data-​driven machine learning 
methods such as autoencoders (Box 1). For example, 
one autoencoder-​based multi-​omics data integration 
method94 has been trained to create a common latent 
space for many different modalities. Powerful compu-
tational tools such as this can indeed integrate multiple 
data types, automatically and regardless of the difficul-
ties associated with comprehensive causal modelling. In 
a sense, machine learning methods completely avoid the 
careful modelling of mechanisms and instead apply a 
generically complex model to a very large reference data-
set to produce a well-​performing model with unknown 
parts. Thus, interpreting the details of a machine learn-
ing method in terms of biological correspondents is 
difficult. More importantly, the training of complex 
machine learning models typically requires very large 
volumes of data. On the positive side, developments 
in high-​throughput multi-​omics technologies promise 
the availability of such training data. On the negative 
side, for the models to be generalizable, we need more 
than just replicate numbers but also large amounts of 

data across varying conditions such as from different 
cell and tissue types. Until a mechanistic model of a cell 
with sufficient precision to enable the integration of 
data under a causal model is available, both the utility 
and the validation of any integration method must be 
evaluated in terms of their application, for example, by 
the recovery of the identities of biologically plausible  
cell types.

Conclusion and future directions
The integration of single-​cell multi-​omics data has been 
implemented in many real data analyses, revealing new 
biological insights. For example, multi-​omics integration 
has identified the presence of a pro-​inflammatory, ‘failed 
repair proximal tubule cell’ state in apparently healthy 
human kidneys13,95; it also facilitated the prioritization 
of genome-​wide association study loci through the iden-
tification of methylation and gene expression changes 
that are likely to mediate the development of diabetic 
kidney disease96 and has helped identify mechanisms of 
myofibroblast activation in chronic kidney disease8.

Ideally, the process of generating data integration 
models and evaluating the models should itself shed 
light on the mechanisms of biological processes such as 
gene regulation. For example, cell identity is traditionally 
defined by the abundance of specific RNAs or proteins, 
but integration of these data with other omics datasets 
could effectively broaden the definition of cell types to 
other chemical–physical modalities of the cell. In addi-
tion, novel relationships across data modalities can be 
studied with multi-​omics data integration. For instance, 
correlating DNA methylation with gene expression in 
cis might reveal differential functional impacts of meth-
ylation of different DNA elements (promoters or gene 
body). However, regardless of their utility in the model-
ling of biological processes, data integration often yields 
more or better resolved inferences than analyses of single 
datasets alone. For example, the addition of scATAC-​seq 
to scRNA-​seq data better distinguishes different seg-
ments of proximal tubules in the kidney36 than does 
scRNA-​seq data alone. Integrated data analyses can also 
identify underappreciated relationships that might lead 
to additional applications such as drug target discovery 
or better causal SNP inference.

Currently available computational methods have 
generally followed the development of the measure-
ments themselves. The number of available methods that 
attempt to integrate unmatched data far outweighs the 
number of methods that attempt to integrate matched 
data simply because multi-​omics measurements have 
only become widely available in the past couple of 
years. Methods for integrating cell morphologies97, 
perturbations98, spatial microenvironment52,99 and sub-
cellular measurements100 (for example, of organelles) 
are sparse, as are the corresponding data. However, we 
expect that methods to integrate these data will rapidly 
follow the availability of such data. In addition, most 
current computational methods are built to integrate 
two modalities; however, with the development of 
experimental methods that jointly profile three or more 
modalities, more flexible computational algorithms will 
be required.
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Among the computational tools that lag behind the 
analytical methods are methods for the visualization 
of complex multimodal data that interactively connect 
between different views and ancillary information. 
Some of the barriers to the development of these tools 
are the speed and capacity of the computers themselves. 
Approaches to enable the interactive visualization of 
extremely large volumes of data in the single-​cell field 
is non-​trivial and may eventually require dedicated 
hardware.

As discussed above, one ideal way to integrate data is 
in terms of a causal model between the quantitative data 

and the underlying molecular processes such as cell dif-
ferentiation, physiology and homeostasis. Conversely, we 
hope that multimodal data, by providing measurements 
from multiple aspects of the biology of an organism, 
could aid the development of such causal models. The 
era of multi-​omics single-​cell biology at the scale of mil-
lions of cells is just starting and we have no doubt that 
the data, analytical methods and inferred models will 
advance our understanding of the kidney by leaps and 
bounds in years to come.
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